Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37463797

RESUMEN

Potash mining, typically performed for agricultural fertilizer production, can create piles of residual salt waste that are ecologically detrimental and difficult to revegetate. Biological soil crusts (biocrusts) have been found growing on and around these heaps, suggesting resilience to the hypersaline environment. We set out to understand the community dynamics of biocrust formation by examining two succesionary salinity gradients at historical mining sites using a high throughput amplicon sequencing. Bare heaps were distinct, with little overlap between sites, and were characterized by high salinity, low nutrient availability, and specialized, low diversity microbial communities, dominated by Halobacteria, Chloroflexia, and Deinococci. 'Initial' stages of biocrust development were dominated by site-specific Cyanobacteria, with significant overlap between sites. Established biocrusts were the most diverse, with large proportions of Alphaproteobacteria, Anaerolineae, and Planctomycetacia. Along the salinity gradient at both sites, salinity decreased, pH decreased, and nutrients and Chlorophyll a increased. Microbiomes between sites converged during succession and community assembly process analysis revealed biocrusts at both sites were dominated by deterministic, niche-based processes; indicating a high degree of phylogenetic turnover. We posit early cyanobacterial colonization is essential for biocrust initiation, and facilitates later establishment of plant and other higher-level biota.


Asunto(s)
Chloroflexi , Cianobacterias , Microbiota , Clorofila A , Filogenia , Cianobacterias/genética , Suelo/química , Cloruro de Sodio , Microbiología del Suelo
2.
Front Microbiol ; 14: 1169958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520365

RESUMEN

Introduction: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.

3.
Protoplasma ; 260(6): 1539-1553, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37291393

RESUMEN

For the present study, we collected the Ulvophyceae species Trentepohlia aurea from limestone rock near Berchtesgaden, Germany, and the closely related taxa T. umbrina from Tilia cordata tree bark and T. jolithus from concrete wall both in Rostock, Germany. Freshly sampled material stained with Auramine O, DIOC6, and FM 1-43 showed an intact physiological status. Cell walls were depicted with calcofluor white and Carbotrace. When subjected to three repeated and controlled cycles of desiccation over silica gel (~ 10% relative humidity) followed by rehydration, T. aurea recovered about 50% of the initial photosynthetic yield of photosystem II (YII). In contrast, T. umbrina and T. jolithus recovered to 100% of the initial YII. HPLC and GC analysis of compatible solutes found highest proportions of erythritol in T. umbrina and mannitol/arabitol in T. jolithus. The lowest total compatible solute concentrations were detected in T. aurea, while the C/N ratio was highest in this species, indicative of nitrogen limitation. The prominent orange to red coloration of all Trentepohlia was due to extremely high carotenoid to Chl a ratio (15.9 in T. jolithus, 7.8 in T. aurea, and 6.6. in T. umbrina). Photosynthetic oxygen production was positive up to ~ 1500 µmol photons m-2 s-1 with the highest Pmax and alpha values in T. aurea. All strains showed a broad temperature tolerance with optima for gross photosynthesis between 20 and 35 °C. The presented data suggest that all investigated Trentepohlia species are well adapted to their terrestrial lifestyle on exposed to sunlight on a vertical substrate with little water holding capacity. Nevertheless, the three Trentepohlia species differed concerning their desiccation tolerance and compatible solute concentrations. The lower compatible solute contents in T. aurea explain the incomplete recovery of YII after rehydration.

4.
Front Microbiol ; 14: 1279151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169811

RESUMEN

Terrestrial diatoms are widespread in a large variety of habitats and are regularly recorded in biocrusts. Although diatoms have long been known to live in terrestrial habitats, only a few studies have focused on their diversity of ecophysiology. Here we present a study on the ecophysiological performance of five terrestrial diatom cultures from biocrusts, which were collected in sand dunes of the German coast of the Baltic Sea. The sampling sites were selected along a gradient of human impacts on the dunes. The richness of diatom species, roughly estimated from permanent slides, was around 30 species per sampling site. The species abundance was calculated in the same way revealing a high proportion of broken diatom frustules. All diatom cultures established in the laboratory showed no photoinhibition and high oxygen production along a light gradient. The desiccation tolerance differed among the strains, with high recovery observed for Hantzschia abundans and Achnanthes coarctata and low to no recovery for Pinnularia borealis and Pinnularia intermedia. The maximum growth rate for most strains was between 25 and 30°C. These temperatures can be easily reached in their natural environments. Nevertheless, during short-term exposure to elevated temperatures, oxygen production was recorded up to 35°C. Interestingly, two of five diatom cultures (Hantzschia abundans and Pinnularia borealis) produced mycosporine-like amino acids. These UV-protective substances are known from marine diatoms but not previously reported in terrestrial diatoms.

5.
Front Microbiol ; 13: 859447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783389

RESUMEN

Biological soil crusts occur worldwide as pioneer communities stabilizing the soil surface. In coastal primary sand dunes, vascular plants cannot sustain due to scarce nutrients and the low-water-holding capacity of the sand sediment. Thus, besides planted dune grass, biocrusts are the only vegetation there. Although biocrusts can reach high coverage rates in coastal sand dunes, studies about their biodiversity are rare. Here, we present a comprehensive overview of the biodiversity of microorganisms in such biocrusts and the neighboring sand from sampling sites along the Baltic Sea coast. The biodiversity of Bacteria, Cyanobacteria, Fungi, and other microbial Eukaryota were assessed using high-throughput sequencing (HTS) with a mixture of universal and group-specific primers. The results showed that the biocrusts recruit their microorganisms mainly from the neighboring sand rather than supporting a universal biocrust microbiome. Although in biocrusts the taxa richness was lower than in sand, five times more co-occurrences were identified using network analysis. This study showed that by comparing neighboring bare surface substrates with biocrusts holds the potential to better understand biocrust development. In addition, the target sequencing approach helps outline potential biotic interactions between different microorganisms groups and identify key players during biocrust development.

6.
Front Microbiol ; 13: 769767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369523

RESUMEN

Biological soil crusts (biocrusts) harbor a diverse community of various microorganisms with microalgae as primary producers and bacteria living in close association. In mesic regions, biocrusts emerge rapidly on disturbed surface soil in forest, typically after clear-cut or windfall. It is unclear whether the bacterial community in biocrusts is similar to the community of the surrounding soil or if biocrust formation promotes a specific bacterial community. Also, many of the interactions between bacteria and algae in biocrusts are largely unknown. Through high-throughput-sequencing analysis of the bacterial community composition, correlated drivers, and the interpretation of biological interactions in a biocrust of a forest ecosystem, we show that the bacterial community in the biocrust represents a subset of the community of the neighboring soil. Bacterial families connected with degradation of large carbon molecules, like cellulose and chitin, and the bacterivore Bdellovibrio were more abundant in the biocrust compared to bulk soil. This points to a closer interaction and nutrient recycling in the biocrust compared to bulk soil. Furthermore, the bacterial richness was positively correlated with the content of mucilage producing algae. The bacteria likely profit from the mucilage sheaths of the algae, either as a carbon source or protectant from grazing or desiccation. Comparative sequence analyses revealed pronounced differences between the biocrust bacterial microbiome. It seems that the bacterial community of the biocrust is recruited from the local soil, resulting in specific bacterial communities in different geographic regions.

7.
Phytotaxa ; 532(3): 192-208, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35330967

RESUMEN

Timaviella Sciuto & Moro is a recently established cryptic genus of cyanobacteria separated from the morphologically close Leptolyngbya due to clear differences in the 16S rRNA gene sequence and the 16S-23S ITS region secondary structure. Conducting research on biological soil crusts in coastal ecotopes of Ukraine and Germany, we repeatedly observed thin filamentous cyanobacteria morphologically corresponding to the common terrestrial species Leptolyngbya edaphica (Elenkin) Anagnostidis & Komárek. Molecular data based on 16S rRNA gene sequence comparison of the original strains of the morphospecies indicated unambiguous assignment to the genus Timaviella. Based on this finding, we proposed the new nomenclatural combination Timaviella edaphica (Elenkin) O.M. Vynogr. & Mikhailyuk in our previous publication. Deeper molecular study of the four original strains which were morphologically identified as T. edaphica based on the 16S rRNA gene concatenated with the 16S-23S ITS region and 16S-23S ITS secondary structure analysis showed that they are not identical. Three of them (isolated from biocrusts of Black Sea coast and forest path near Kyiv, Ukraine) had high similarity both in 16S rRNA (99.7-100%) and 16S-23S ITS (99.8-100%) hence actually representing T. edaphica. The strain Us-6-3 isolated from biocrusts on sand dunes of Usedom Island in the Baltic Sea, Germany, differs both from original strains of T. edaphica and all published Timaviella species in 16S rRNA gene sequence identity, as well as in sequence and structure of the 16S-23S ITS region. Here we describe Timaviella dunensis sp. nov. and give an expanded description of T. edaphica based on morphological and molecular features. A tabular review of Timaviella species with data on their phenotypic and genotypic features, ecology and distribution is included.

8.
Biology (Basel) ; 12(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671750

RESUMEN

(1) Biological soil crusts (biocrusts) are microecosystems consisting of prokaryotic and eukaryotic microorganisms growing on the topsoil. This study aims to characterize changes in the community structure of biocrust phototrophic organisms along a dune chronosequence in the Baltic Sea compared to an inland dune in northern Germany. (2) A vegetation survey followed by species determination and sediment analyses were conducted. (3) The results highlight a varying phototrophic community composition within the biocrusts regarding the different successional stages of the dunes. At both study sites, a shift from algae-dominated to lichen- and moss-dominated biocrusts in later successional dune types was observed. The algae community of both study sites shared 50% of the identified species while the moss and lichen community shared less than 15%. This indicates a more generalized occurrence of the algal taxa along both chronosequences. The mosses and lichens showed a habitat-specific species community. Moreover, an increase in the organic matter and moisture content with advanced biocrust development was detected. The enrichment of carbon, nitrogen, and phosphorus in the different biocrust types showed a similar relationship. (4) This relation can be explained by biomass growth and potential nutrient mobilization by the microorganisms. Hence, the observed biocrust development potentially enhanced soil formation and contributed to nutrient accumulation.

9.
Microorganisms ; 9(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34576715

RESUMEN

Changes in water balance are some of the most critical challenges that aeroterrestrial algae face. They have a wide variety of mechanisms to protect against osmotic stress, including, but not limited to, downregulating photosynthesis, the production of compatible solutes, spore and akinete formation, biofilms, as well as triggering structural cellular changes. In comparison, algae living in saline environments must cope with ionic stress, which has similar effects on the physiology as desiccation in addition to sodium and chloride ion toxicity. These environmental challenges define ecological niches for both specialist and generalist algae. One alga known to be aeroterrestrial and euryhaline is Stichococcus bacillaris Nägeli, possessing the ability to withstand both matric and osmotic stresses, which may contribute to wide distribution worldwide. Following taxonomic revision of Stichococcus into seven lineages, we here examined their physiological responses to osmotic and matric stress through a salt growth challenge and desiccation experiment. The results demonstrate that innate compatible solute production capacity under salt stress and desiccation tolerance are independent of one another, and that salt tolerance is more variable than desiccation tolerance in the Stichococcus-like genera. Furthermore, algae within this group likely occupy similar ecological niches, with the exception of Pseudostichococcus.

10.
Front Microbiol ; 12: 642811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912148

RESUMEN

The German Baltic Sea coastline is characterized by sea-land transitions zones, specifically coastal peatlands. Such transition zones exhibit highly fluctuating environmental parameters and dynamic gradients that affect physiological processes of inhabiting organisms such as microphytobenthic communities. In the present study four representative and abundant benthic diatom strains [Melosira nummuloides, Nitzschia filiformis, Planothidium sp. (st. 1) and Planothidium sp. (st.2)] were isolated from a Baltic Sea beach and three peatlands that are irregularly affected by Baltic Sea water intrusion. Ecophysiological and cell biological traits of the strains were investigated for the first time as function of light, temperature and salinity. The four strains exhibited euryhaline growth over a range of 1-39 SA, surpassing in situ salinity of the respective brackish habitats. Furthermore, they showed eurythermal growth over a temperature range from 5 to 30°C with an optimum temperature between 15 and 20°C. Growth rates did not exhibit any differences between the peatland and Baltic Sea strains. The photosynthetic temperature optimum of the peatland diatom isolates, however, was much higher (20-35°C) compared to the Baltic Sea one (10°C). All strains exhibited light saturation points ranging between 29.8 and 72.6 µmol photons m-2 s-1. The lipid content did not change in response to the tested abiotic factors. All data point to wide physiological tolerances in these benthic diatoms along the respective sea-land transitions zones. This study could serve as a baseline for future studies on microphytobenthic communities and their key functions, like primary production, under fluctuating environmental stressors along terrestrial-marine gradients.

11.
Protoplasma ; 258(6): 1187-1199, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33550447

RESUMEN

Single-celled green algae within the Trebouxiophyceae (Chlorophyta) are typical components of terrestrial habitats, which often exhibit harsh environmental conditions for these microorganisms. This study provides a detailed overview of the ecophysiological, biochemical, and ultrastructural traits of an alga living on tree bark. The alga was isolated from a cypress tree in the Botanical Garden of Innsbruck (Austria) and identified by morphology and molecular phylogeny as Diplosphaera chodatii. Transmission electron microscopy after high-pressure freezing (HPF) showed an excellent preservation of the ultrastructure. The cell wall was bilayered with a smooth inner layer and an outer layer of polysaccharides with a fuzzy hair-like appearance that could possibly act as cell-cell adhesion mechanism and hence as a structural precursor supporting biofilm formation together with the mucilage observed occasionally. The photosynthetic-irradiance curves of D. chodatii indicated low light requirements without photoinhibition at high photon flux densities (1580 µmol photons m-2 s-1) supported by growth rate measurements. D. chodatii showed a high desiccation tolerance, as 85% of its initial value was recovered after controlled desiccation at a relative humidity of ~10%. The alga contained the low molecular weight carbohydrates sucrose and sorbitol, which probably act as protective compounds against desiccation. In addition, a new but chemically not elucidated mycosporine-like amino acid was detected with a molecular mass of 332 g mol-1 and an absorption maximum of 324 nm. The presented data provide various traits which contribute to a better understanding of the adaptive mechanisms of D. chodatii to terrestrial habitats.


Asunto(s)
Chlorophyta , Aclimatación , Adaptación Fisiológica , Ecosistema , Fotosíntesis
12.
Microorganisms ; 9(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498223

RESUMEN

Biological soil crusts (biocrusts) accommodate diverse communities of phototrophic and heterotrophic microorganisms. Heterotrophic protists have critical roles in the microbial food webs of soils, with Cercozoa and Endomyxa often being dominant groups. Still, the diversity, community composition, and functions of Cercozoa and Endomyxa in biocrusts have been little explored. In this study, using a high-throughput sequencing method with taxon-specific barcoded primers, we studied cercozoan and endomyxan communities in biocrusts from two unique habitats (subarctic grassland and temperate dunes). The communities differed strongly, with the grassland and dunes being dominated by Sarcomonadea (69%) and Thecofilosea (43%), respectively. Endomyxa and Phytomyxea were the minor components in dunes. Sandonidae, Allapsidae, and Rhogostomidae were the most abundant taxa in both habitats. In terms of functionality, up to 69% of the grassland community was constituted by bacterivorous Cercozoa. In contrast, cercozoan and endomyxan communities in dunes consisted of 31% bacterivores, 25% omnivores, and 20% eukaryvores. Facultative and obligate eukaryvores mostly belonged to the families Rhogostomidae, Fiscullidae, Euglyphidae, Leptophryidae, and Cercomonadidae, most of which are known to feed mainly on algae. Biocrust edaphic parameters such as pH, total organic carbon, nitrogen, and phosphorus did not have any significant influence on shaping cercozoan communities within each habitat, which confirms previous results from dunes.

13.
Front Microbiol ; 11: 585836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178169

RESUMEN

The globally distributed green microalga Chlorella vulgaris (Chlorophyta) colonizes aquatic and terrestrial habitats, but the molecular mechanisms underpinning survival in these two contrasting environments are far from understood. Here, we compared the authentic strain of C. vulgaris from an aquatic habitat with a strain from a terrestrial high alpine habitat previously determined as Chlorella mirabilis. Molecular phylogeny of SSU rDNA (823 bp) showed that the two strains differed by one nucleotide only. Sequencing of the ITS2 region confirmed that both strains belong to the same species, but to distinct ribotypes. Therefore, the terrestrial strain was re-assessed as C. vulgaris. To study the response to environmental conditions experienced on land, we assessed the effects of irradiance and temperature on growth, of temperature on photosynthesis and respiration, and of desiccation and rehydration on photosynthetic performance. In contrast to the aquatic strain, the terrestrial strain tolerated higher temperatures and light conditions, had a higher photosynthesis-to-respiration ratio at 25°C, still grew at 30°C and was able to fully recover photosynthetic performance after desiccation at 84% relative humidity. The two strains differed most in their response to the dehydration/rehydration treatment, which was further investigated by untargeted GC-MS-based metabolite profiling to gain insights into metabolic traits differentiating the two strains. The two strains differed in their allocation of carbon and nitrogen into their primary metabolites. Overall, the terrestrial strain had higher contents of readily available nitrogen-based metabolites, especially amino acids and the polyamine putrescine. Dehydration and rehydration led to differential regulation of the amino acid metabolism, the tricarboxylic acid cycle and sucrose metabolism. The data are discussed with a view to differences in phenotypic plasticity of the two strains, and we suggest that the two genetically almost identical C. vulgaris strains are attractive models to study mechanisms that protect from abiotic stress factors, which are more frequent in terrestrial than aquatic habitats, such as desiccation and irradiation.

14.
Microorganisms ; 8(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121104

RESUMEN

Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.

15.
Microorganisms ; 8(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674483

RESUMEN

Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone with (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.

16.
Front Microbiol ; 11: 499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292396

RESUMEN

The terrestrial green algal members of the genera Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta) are found in biological soil crusts of extreme habitats around the world where they are regularly exposed, among other abiotic stress factors, to high levels of ultraviolet radiation (UVR). As a consequence those species synthesize and accumulate either one or two mycosporine-like amino acids (MAAs), but with a missing structural elucidation up to now. Therefore, in the present study both MAAs were chemically isolated and structurally elucidated. The two new compounds exhibit absorption maxima of 324 nm. MAA 1 has a molecular weight of 467 and MAA 2 of 305, and the latter (MAA 2) was identified as N-(4,5-dihydroxy-5-(hydroxymethyl)-2-methoxy-3-oxocyclohex-1-en-1-yl)-N-methylserine using one- and two-dimensional 1H and 13C-NMR spectroscopy. MAA 1 contains an additional sugar moiety. As trivial names for these two novel MAAs we suggest klebsormidin A and klebsormidin B. Different species from all previously described phylogenetic clades of Klebsormidiophyceae were chemically screened for their MAA composition in aqueous extracts using RP-HPLC and LC-MS. The novel klebsormidin A was present throughout all clades and hence could be suitable as a chemotaxonomic marker. Additionally, controlled UVR-exposure experiments with all investigated species showed that MAA biosynthesis and intracellular enrichment is strongly induced by short wavelengths, supporting the function of these compounds as natural UV-sunscreen as well as explaining the cosmopolitan distribution and ecological success of Interfilum and Klebsormidium in terrestrial habitats.

17.
J Phycol ; 56(3): 671-686, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31994728

RESUMEN

Several strains of terrestrial algae isolated from biological soil crusts in Germany and Ukraine were identified by morphological methods as the widely distributed species Dictyosphaerium minutum (=Dictyosphaerium chlorelloides). Investigation of the phylogeny showed their position unexpectedly outside of Chlorellaceae (Trebouxiophyceae) and distantly from Chlorella chlorelloides, to which this taxon was attributed after revision of the genus Chlorella based on an integrative approach. SSU rRNA phylogeny determined the position of our strains inside a clade recently described as a new genus of the cryptic alga Xerochlorella olmiae isolated from desert biological soil crusts in the United States. Investigation of the morphology of the authentic strain of X. olmiae showed Dictyosphaerium-like morphology, as well as some other characters, common for our strains and morphospecies D. minutum. The latter alga was described as terrestrial and subsequently united with the earlier described aquatic representative D. chlorelloides because of their similar morphology. The revision of Chlorella mentioned above provided only one aquatic strain (D. chlorelloides), which determined its position in the genus. But terrestrial strains of the morphospecies were not investigated phylogenetically. Our study showed that the terrestrial D. minutum is not related to the morphologically similar D. chlorelloides (=Chlorella chlorelloides, Chlorellaceae), and instead represented a separate lineage in the Trebouxiophyceae, recently described as genus Xerochlorella. Therefore, revision of Xerochlorella is proposed, including nomenclatural combinations, epitypifications, and emendations of two species: X. minuta and X. dichotoma. New characters of the genus based on investigation of morphology and ultrastructure were determined.


Asunto(s)
Chlorella , Alemania , Filogenia
18.
Phytotaxa ; 400(3): 165-179, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31501642

RESUMEN

Representatives of the Gomontiellaceae (Oscillatoriales) are rare and hence unstudied cyanobacteria with unusual morphology, distributed in terrestrial and aquatic habitats all over the world. Investigation of the group based on an integrative approach is only beginning, and to understand the actual biodiversity and ecology, a greater number of cultivated strains is necessary. However, some ecological traits of these cyanobacteria (e.g. low population densities, the absence of conspicuous growth in nature) led to methodological difficulties during isolation in culture. One species in the family Gomontiellaceae, Crinalium magnum Fritsch et John, is characterized by prominent wide and flattened trichomes, and represented by the non-authentic strain SAG 34.87. Detailed previous investigation of this strain clearly showed its morphological discrepancy with the original description of C. magnum and the genus Crinalium in general. The new isolate from maritime sand dunes of the Baltic Sea coast (Germany), however, revealed morphological characters completely corresponding with the diagnosis of C. magnum. Phylogenetic analysis based on 16S rRNA sequences indicated a position of the new strain inside Gomontiellaceae. Both morphology and ultrastructure of the strain are congruous with characters of the family. Epitypification and emendation of C. magnum are proposed since the ecology and habitat of the original strain are congruent with the type locality of this rare species (sand, Irish Sea coast, North Wales, UK). We expanded the description of C. magnum by details of the filament development and specified dimensional ranges for trichomes and cells, as well as by new data about the transversely striated structure of mucilaginous sheath.

19.
Appl Microbiol Biotechnol ; 103(1): 519-533, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30334088

RESUMEN

Anaerobic digestion of nitrogen-rich substrate often causes process inhibition due to the susceptibility of the microbial community facing ammonia accumulation. However, the precise response of the microbial community has remained largely unknown. To explore the reasons, bacterial communities in ammonia-stressed reactors and control reactors were studied by amplicon pyrosequencing of 16S rRNA genes and the active methanogens were followed by terminal restriction fragment length polymorphism (T-RFLP) analyses of mcrA/mrtA gene transcripts. The results showed that the diversity of bacterial communities decreased in two parallel ammonia-inhibited reactors compared with two control reactors, but different levels of inhibitions coinciding with different community shifts were observed. In one reactor, the process was completely inhibited, which was preceded by a decreasing relative abundance of the phylum Firmicutes. Despite the same operating conditions, the process was stabilized in the parallel, partially inhibited reactor, in which the relative abundance of Firmicutes greatly increased. In particular, both ammonia-inhibited reactors lacked taxa assumed to be syntrophic bacteria (Thermoanaerobacteraceae, Syntrophomonadaceae, and Synergistaceae). Besides the predominance of the hydrogenotrophic methanogens Methanoculleus and Methanobacterium, activity of Methanosarcina and even of the strictly aceticlastic genus Methanosaeta were found to contribute at very high ammonia levels (> 9 g NH4-N L-1) in the stabilized reactor (partial inhibition). In contrast, the lack of aceticlastic activity in the parallel reactor might have led to acetate accumulation and thus process failure (complete inhibition). Collectively, ammonia was found to be a general inhibitor while accumulating acetate and thus acidification might be the key factor of complete process failure.


Asunto(s)
Amoníaco/metabolismo , Biocombustibles , Reactores Biológicos/microbiología , Consorcios Microbianos/fisiología , Amoníaco/farmacología , Biodiversidad , Metano/metabolismo , Consorcios Microbianos/efectos de los fármacos , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Microb Ecol ; 77(2): 380-393, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29974184

RESUMEN

Streptophyte algae are the ancestors of land plants, and several classes contain taxa that are adapted to an aero-terrestrial lifestyle. In this study, four basal terrestrial streptophytes from the class Klebsormidiophyceae, including Hormidiella parvula; two species of the newly described genus Streptosarcina (S. costaricana and S. arenaria); and the newly described Streptofilum capillatum were investigated for their responses to radiation, desiccation and temperature stress conditions. All the strains showed low-light adaptation (Ik < 70 µmol photons m-2 s-1) but differed in photoprotective capacities (such as non-photochemical quenching). Acclimation to enhanced photon fluence rates (160 µmol photons m-2 s-1) increased photosynthetic performance in H. parvula and S. costaricana but not in S. arenaria, showing that low-light adaptation is a constitutive trait for S. arenaria. This lower-light adaptation of S. arenaria was coupled with a higher desiccation tolerance, providing further evidence that dehydration is a selective force shaping species occurrence in low light. For protection against ultraviolet radiation, all species synthesised and accumulated different amounts of mycosporine-like amino acids (MAAs). Biochemically, MAAs synthesised by Hormidiella and Streptosarcina were similar to MAAs from closely related Klebsormidium spp. but differed in retention time and spectral characteristics in S. capillatum. Unlike the different radiation and dehydration tolerances, Hormidiella, Streptosarcina and Streptofilum displayed preferences for similar thermal conditions. These species showed a temperature dependence of photosynthesis similar to respiration, contrasting with Klebsormidium spp. and highlighting an interspecific diversity in thermal requirements, which could regulate species distributions under temperature changes.


Asunto(s)
Fotosíntesis , Streptophyta/fisiología , Streptophyta/efectos de la radiación , Agua/metabolismo , Adaptación Fisiológica/efectos de la radiación , Ecosistema , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...