Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Infect Agent Cancer ; 19(1): 39, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187871

RESUMEN

During the past two decades evidence has been developed that indicates a handful of viruses with known oncogenic capacity, have potential roles in breast cancer. These viruses are mouse mammary tumour virus (MMTV - the cause of breast cancer in mice), high-risk human papilloma viruses (HPV-the cause of cervical cancer), Epstein Barr virus (EBV-the cause of lymphomas and naso-pharyngeal cancer) and bovine leukemia virus (BLV - the cause of cancers in cattle). These viruses may act alone or in combination. Each of these viruses are significantly more prevalent in breast cancers than in normal and benign breast tissue controls. The odds ratios for the prevalence of these viruses in breast cancer compared to normal and benign breast controls, are based on case control studies - MMTV 13·40, HPV 5.56, EBV 4·43 and BLV 2·57. The odds ratios for MMTV are much greater compared to the other three viruses. The evidence for a causal role for mouse mammary tumour virus and high risk for cancer human papilloma viruses in human breast cancer is increasingly comprehensive. The evidence for Epstein Barr virus and bovine leukemia virus is more limited. Overall the evidence is substantial in support of a viral cause of breast cancer.

2.
Infect Agent Cancer ; 17(1): 23, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637508

RESUMEN

BACKGROUND: The aim of this review is to consider whether multiple pathogens have roles in prostate cancer. METHODS: We have reviewed case control studies in which infectious pathogens in prostate cancer were compared to normal and benign prostate tissues. We also reviewed additional evidence from relevant published articles. RESULTS: We confirmed that high risk human papilloma viruses are a probable cause of prostate cancer. We judged Escherichia coli, Cutibacterium acnes, Neisseria gonorrhoea, Herpes simplex, Epstein Barr virus and Mycoplasmas as each having possible but unproven roles in chronic prostatic inflammation and prostate cancer. We judged Cytomegalovirus, Chlamydia trachomatis, Trichomonas vaginalis and the Polyoma viruses as possible but unlikely to have a role in prostate cancer. CONCLUSIONS AND ACTIONS: The most influential cause of prostate cancer appears to be infection induced chronic inflammation. Given the high prevalence of prostate cancer it is important for action to can be taken without waiting for additional conclusive evidence. These include: 1. Encouragement of all boys (as well as girls) to have HPV vaccines 2. The vigorous use of antibiotics to treat all bacterial pathogens identified in the urogenital tract 3. The use of antiviral medications to control herpes infections 4. Education about safe sexual practices.

3.
Viruses ; 14(4)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35458452

RESUMEN

For many decades, the betaretrovirus, mouse mammary tumour virus (MMTV), has been a causal suspect for human breast cancer. In recent years, substantial new evidence has been developed. Based on this evidence, we hypothesise that MMTV has a causal role. We have used an extended version of the classic A. Bradford Hill causal criteria to assess the evidence. 1. Identification of MMTV in human breast cancers: The MMTV 9.9 kb genome in breast cancer cells has been identified. The MMTV genome in human breast cancer is up to 98% identical to MMTV in mice. 2. EPIDEMIOLOGY: The prevalence of MMTV positive human breast cancer is about 35 to 40% of breast cancers in Western countries and 15 to 20% in China and Japan. 3. Strength of the association between MMTV and human breast cancer: Consistency-MMTV env gene sequences are consistently five-fold higher in human breast cancer as compared to benign and normal breast controls. 4. Temporality (timing) of the association: MMTV has been identified in benign and normal breast tissues up to 10 years before the development of MMTV positive breast cancer in the same patient. 5. EXPOSURE: Exposure of humans to MMTV leads to development of MMTV positive human breast cancer. 6. Experimental evidence: MMTVs can infect human breast cells in culture; MMTV proteins are capable of malignantly transforming normal human breast epithelial cells; MMTV is a likely cause of biliary cirrhosis, which suggests a link between MMTV and the disease in humans. 7. Coherence-analogy: The life cycle and biology of MMTV in humans is almost the same as in experimental and feral mice. 8. MMTV Transmission: MMTV has been identified in human sputum and human milk. Cereals contaminated with mouse fecal material may transmit MMTV. These are potential means of transmission. 9. Biological plausibility: Retroviruses are the established cause of human cancers. Human T cell leukaemia virus type I (HTLV-1) causes adult T cell leukaemia, and human immunodeficiency virus infection (HIV) is associated with lymphoma and Kaposi sarcoma. 10. Oncogenic mechanisms: MMTV oncogenesis in humans probably differs from mice and may involve the enzyme APOBEC3B. CONCLUSION: In our view, the evidence is compelling that MMTV has a probable causal role in a subset of approximately 40% of human breast cancers.


Asunto(s)
Neoplasias de la Mama , Virus del Tumor Mamario del Ratón , Animales , Betaretrovirus , Neoplasias de la Mama/genética , Neoplasias de la Mama/virología , Citidina Desaminasa/genética , Femenino , Genes env , Humanos , Linfoma , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/patogenicidad , Ratones , Antígenos de Histocompatibilidad Menor
4.
Int J Cardiol Heart Vasc ; 35: 100807, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34286061

RESUMEN

HYPOTHESIS: It is hypothesised that a combination of childhood and later life infections and excess food consumption, particularly of Western style food, initiates and contributes to atherosclerotic coronary heart disease. To consider this hypothesis we have conducted a brief review of the role of childhood infections, food, and their combined influence on atherosclerosis. EVIDENCE: (i) Studies of populations with high prevalence of infections and low "hunter gather" like food consumption, have extremely low prevalence of atherosclerosis, (ii) there are consistent associations between infections in childhood and adult atherosclerotic coronary heart disease, (iii) there is an association between increased body weight, (an indication of excess eating), and atherosclerotic heart disease, and (iv) there is evidence that a combination of increased body weight and infections influences the development of atherosclerotic coronary heart disease.Infections do not appear to act independently to cause atherosclerosis. A combination of both food and infection appears to be required to cause atheroma. CONCLUSION: The hypothesis that infections when combined with excess eating initiates atherosclerosis, is plausible. ACTION: Action aimed at prevention of atherosclerotic heart disease is possible. There are three safe approaches to prevention (i) encouragement of Mediterranean like diets, (ii) avoidance of overeating and (iii) vigorous control of infections among all age groups. There is a need to monitor patients with a history of serious childhood infections and poor nutrition. In addition, for high risk subjects, cholesterol lowering statins are of proven and safe value.

5.
Infect Agent Cancer ; 16(1): 37, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34108009

RESUMEN

We have considered viruses and their contribution to breast cancer. MOUSE MAMMARY TUMOUR VIRUS: The prevalence of mouse mammary tumour virus (MMTV) is 15-fold higher in human breast cancer than in normal and benign human breast tissue controls. Saliva is the most plausible means of transmission. MMTV has been identified in dogs, cats, monkeys, mice and rats. The causal mechanisms include insertional oncogenesis and mutations in the protective enzyme ABOBEC3B. HUMAN PAPILLOMA VIRUS: The prevalence of high risk human papilloma viruses (HPV) is frequently six fold higher in breast cancer than in normal and benign breast tissue controls. Women who develop HPV associated cervical cancer are at higher than normal risk of developing HPV associated breast cancer. Koilocytes have been identified in breast cancers which is an indication of HPV oncogenicity. The causal mechanisms of HPVs in breast cancer appear to differ from cervical cancer. Sexual activity is the most common form of HPV transmission. HPVs are probably transmitted from the cervix to the breast by circulating extra cellular vesicles. EPSTEIN BARR VIRUS: The prevalence of Epstein Barr virus (EBV) is five fold higher in breast cancer than in normal and benign breast tissue controls. EBV is mostly transmitted from person to person via saliva. EBV infection predisposes breast epithelial cells to malignant transformation through activation of HER2/HER3 signalling cascades. EBV EBNA genes contribute to tumour growth and metastasis and have the ability to affect the mesenchymal transition of cells. BOVINE LEUKEMIA VIRUS: Bovine leukemia virus (BLV) infects beef and dairy cattle and leads to various cancers. The prevalence of BLV is double in human breast cancers compared to controls. Breast cancer is more prevalent in red meat eating and cow's milk consuming populations. BLV may be transmitted to humans from cattle by the consumption of red meat and cow's milk. CONCLUSION: The evidence that MMTV, high risk HPVs and EBVs have causal roles in human breast cancer is compelling. The evidence with respect to BLV is more limited but it is likely to also have a causal role in human breast cancer.

6.
Infect Agent Cancer ; 15: 41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32684946

RESUMEN

It is hypothesised that high risk for cancer human papillomaviruses (HPVs) have a causal role in prostate cancer. In 26 case control studies, high risk HPVs have been identified in benign and prostate cancers. High risk HPVs were identified in 325 (22.6%) of 1284 prostate cancers and in 113 (8.6%) of 1313 normal or benign prostate controls (p = 0.001). High risk HPVs of the same type have been identified in both normal and benign prostate tissues prior to the development of HPV positive prostate cancer. High risk HPVs can be associated with inflammatory prostatitis leading to benign prostate hyperplasia and later prostate cancer. Normal human prostate epithelial cells can be immortalised by experimental exposure to HPVs. HPVs are probably sexually transmitted. The role of HPVs in prostate cancer is complex and differs from HPVs associated cervical cancer. HPV infections may initiate prostate oncogenesis directly and influence oncogenesis indirectly via APOBEC enzymes. HPVs may collaborate with other pathogens in prostate oncogenesis. Although HPVs are only one of many pathogens that have been identified in prostate cancer, they are the only infectious pathogen which can be prevented by vaccination. A causal role for HPVs in prostate cancer is highly likely.

7.
NPJ Breast Cancer ; 5: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728407

RESUMEN

We have reviewed the evidence relevant to mouse mammary tumour viruses (MMTV) and human breast cancer. The prevalence of MMTV- like gene sequences is 15-fold higher in human breast cancer than in normal human breast tissue controls and is present in up to 40% of human breast cancers. MMTV-like gene sequences can be identified in benign breast tissues 1-11 years before the development of positive MMTV-like breast cancer in the same women. The prevalence of MMTV antibodies in sera from women with breast cancer is 5-fold higher than in normal women. MMTV can infect human breast epithelial cells and integrate at random into the human genome located in those cells. MMTV-like gene sequences are present in human milk from normal lactating women and with increased prevalence in milk from women at risk of breast cancer. MMTV-like virus associated human breast cancer has strikingly similar features to MMTV-associated mouse mammary tumours. These features include almost identical nucleotide sequences and structure of the MMTV genome, histology, superantigen expression, MMTV infection of B and T lymphocytes and hormone dependence. MMTV-like gene sequences have also been identified in dogs, cats, monkeys, mice and rats. Saliva has been identified as the most plausible means of transmission from human to human and possibly from dogs to humans. The evidence meets the classic causal criteria. A causal role for MMTV-like viruses in human breast cancer is highly likely.

8.
Front Oncol ; 8: 141, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868468

RESUMEN

PURPOSE: The purpose of this study is to determine whether mouse mammary tumor virus (MMTV)-associated human breast cancer has the same or similar histology to MMTV-associated mouse mammary tumors. Such associations may indicate a role for MMTV in human breast cancer. METHODS: Immunohistochemical techniques (using antibodies directed against the signal peptide p14 of the envelope precursor protein of MMTV) and polymerase chain reaction (PCR) analyses were used to identify MMTV proteins and MMTV-like envelope gene sequences in a series of breast cancers from Australian women. The histological characteristics of these human breast cancer specimens were compared with MMTV positive mouse mammary tumors. The same methods were used to study benign breast tissues which 1-11 years later developed into breast cancer. RESULTS: MMTV p14 proteins were identified in 27 (54%) of 50 human breast cancers. MMTV env gene sequences were identified by PCR in 12 (27%) of 45 human breast cancers. There was a significant correlation between the presence of MMTV (identified by p14 immunohistochemistry) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.001). There was a non-significant correlation between the presence of MMTV env gene sequences (identified by PCR) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.290). MMTV p14 proteins were identified in 7 (54%) of 13 benign breast specimens that later developed into human breast cancers. MMTV by PCR was identified in two benign specimens one of whom later developed MMTV positive breast cancer. DISCUSSION: These observations offer evidence that MMTV may be associated with characteristic human breast cancer histology. p14-based immunohistochemistry appears to be a more reliable technique than PCR for the identification of MMTV in human breast cancer. Identification of MMTV-associated p14 proteins in benign breast tissues confirms prior PCR-based studies that MMTV infection occurs before the development of MMTV positive breast cancer. CONCLUSION: Many MMTV positive human breast cancers have similar histology to MMTV positive mouse mammary tumors. MMTV infection identified in benign breast tissues precedes development of MMTV positive human breast cancer. When considered in the context of prior studies, these observations indicate a likely role for MMTV in human breast cancer.

9.
Front Oncol ; 8: 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404275

RESUMEN

BACKGROUND: Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. THE EVIDENCE: MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. CONCLUSION: The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

10.
Infect Agent Cancer ; 12: 55, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075317

RESUMEN

BACKGROUND: Multiple oncogenic viruses including, mouse mammary tumor virus, bovine leukemia virus, human papilloma virus, and Epstein Barr virus, have been identified as separate infectious pathogens in human breast cancer. Here we demonstrate that these four viruses may be present in normal and benign breast tissues 1 to 11 years before the development of same virus breast cancer in the same patients. METHODS: We combined the data we developed during investigations of the individual four oncogenic viruses and breast cancer. Patients who had benign breast biopsies 1-11 years prior to developing breast cancer were identified by pathology reports from a large Australian pathology service (Douglas Hanly Moir Pathology). Archival formalin fixed specimens from these patients were collected. The same archival specimens were used for (i) investigations of mouse mammary tumour virus (also known as human mammary tumour virus) conducted at the Icahn School of Medicine at Mount Sinai, New York and at the University of Pisa, Italy, (ii) bovine leukemia virus conducted at the University of California at Berkeley,(iii) human papilloma virus and Epstein Barr virus conducted at the University of New South Wales, Sydney, Australia. Seventeen normal breast tissues from cosmetic breast surgery conducted on Australian patients were used as controls. These patients were younger than those with benign and later breast cancer. RESULTS: Standard and in situ polymerase chain reaction (PCR) methods were used to identify the four viruses. The detailed methods are outlined in the separate publications.: mouse mammary tumor virus, human papilloma virus and Epstein Barr virus (Infect Agent Cancer 12:1, 2017, PLoS One 12:e0179367, 2017, Front Oncol 5:277, 2015, PLoS One 7:e48788, 2012). Epstein Barr virus and human papilloma virus were identified in the same breast cancer cells by in situ PCR. Mouse mammary tumour virus was identified in 6 (24%) of 25 benign breast specimens and in 9 (36%) of 25 breast cancer specimens which subsequently developed in the same patients. Bovine leukemia virus was identified in 18 (78%) of 23 benign breast specimens and in 20 (91%) of 22 subsequent breast cancers in the same patients. High risk human papilloma viruses were identified in 13 (72%) of 17 benign breast specimens and in 13 (76%) of 17 subsequent breast cancers in the same patients. Epstein Barr virus was not identified in any benign breast specimens but was identified in 3 (25%) of 12 subsequent breast cancers in the same patients. Mouse mammary tumour virus 3 (18%), bovine leukemia virus 6 (35%), high risk human papilloma virus 3 (18%) and Epstein Barr virus 5 (29%) were identified in 17 normal control breast specimens. CONCLUSIONS: These findings add to the evidence that multiple oncogenic viruses have potential roles in human breast cancer. This is an important observation because evidence of prior infection before the development of disease is a key criterion when assessing causation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA