Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114272, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795348

RESUMEN

Lysine deacetylase inhibitors (KDACis) are approved drugs for cutaneous T cell lymphoma (CTCL), peripheral T cell lymphoma (PTCL), and multiple myeloma, but many aspects of their cellular mechanism of action (MoA) and substantial toxicity are not well understood. To shed more light on how KDACis elicit cellular responses, we systematically measured dose-dependent changes in acetylation, phosphorylation, and protein expression in response to 21 clinical and pre-clinical KDACis. The resulting 862,000 dose-response curves revealed, for instance, limited cellular specificity of histone deacetylase (HDAC) 1, 2, 3, and 6 inhibitors; strong cross-talk between acetylation and phosphorylation pathways; localization of most drug-responsive acetylation sites to intrinsically disordered regions (IDRs); an underappreciated role of acetylation in protein structure; and a shift in EP300 protein abundance between the cytoplasm and the nucleus. This comprehensive dataset serves as a resource for the investigation of the molecular mechanisms underlying KDACi action in cells and can be interactively explored online in ProteomicsDB.


Asunto(s)
Inhibidores de Histona Desacetilasas , Proteómica , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Proteómica/métodos , Acetilación/efectos de los fármacos , Fosforilación/efectos de los fármacos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Proteína p300 Asociada a E1A/metabolismo , Histona Desacetilasas/metabolismo
3.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35590073

RESUMEN

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Asunto(s)
Melanoma , Proteómica , Humanos , Captura por Microdisección con Láser/métodos , Espectrometría de Masas/métodos , Melanoma/genética , Proteoma/química , Proteómica/métodos
4.
Science ; 375(6585): eabi6983, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271311

RESUMEN

Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Sistemas CRISPR-Cas , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Colorantes Fluorescentes , Células HEK293 , Humanos , Inmunoprecipitación , Aprendizaje Automático , Espectrometría de Masas , Microscopía Confocal , Proteínas de Unión al ARN/metabolismo , Análisis Espacial
5.
Nature ; 590(7847): 649-654, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627808

RESUMEN

The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.


Asunto(s)
Ciclo Celular , Proteogenómica/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Proliferación Celular , Humanos , Interfase , Mitosis , Proteínas Oncogénicas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Factores de Tiempo
6.
Trends Cancer ; 7(4): 278-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33436349

RESUMEN

Cellular heterogeneity is an important biological phenomenon observed across space and time in human tissues. Imaging-based spatial proteomic technologies can provide fruitful new readouts of phenotypic states for individual cells at subcellular resolution, which may help unravel the roles of non-genetic cellular heterogeneity in tumorigenesis and drug resistance.


Asunto(s)
Proteómica , Humanos , Imagen Molecular , Neoplasias/metabolismo , Proteínas/metabolismo , Análisis de la Célula Individual
7.
Mol Syst Biol ; 16(8): e9469, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32744794

RESUMEN

The nucleolus is essential for ribosome biogenesis and is involved in many other cellular functions. We performed a systematic spatiotemporal dissection of the human nucleolar proteome using confocal microscopy. In total, 1,318 nucleolar proteins were identified; 287 were localized to fibrillar components, and 157 were enriched along the nucleoplasmic border, indicating a potential fourth nucleolar subcompartment: the nucleoli rim. We found 65 nucleolar proteins (36 uncharacterized) to relocate to the chromosomal periphery during mitosis. Interestingly, we observed temporal partitioning into two recruitment phenotypes: early (prometaphase) and late (after metaphase), suggesting phase-specific functions. We further show that the expression of MKI67 is critical for this temporal partitioning. We provide the first proteome-wide analysis of intrinsic protein disorder for the human nucleolus and show that nucleolar proteins in general, and mitotic chromosome proteins in particular, have significantly higher intrinsic disorder level compared to cytosolic proteins. In summary, this study provides a comprehensive and essential resource of spatiotemporal expression data for the nucleolar proteome as part of the Human Protein Atlas.


Asunto(s)
Nucléolo Celular/metabolismo , Antígeno Ki-67/metabolismo , Proteínas Nucleares/metabolismo , Proteómica/métodos , Cromosomas Humanos/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Mitosis , Fenotipo , Análisis de la Célula Individual
8.
J Histochem Cytochem ; 68(7): 473-489, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32564662

RESUMEN

Imaging is a powerful approach for studying protein expression and has the advantage over other methodologies in providing spatial information in situ at single cell level. Using immunofluorescence and confocal microscopy, detailed information of subcellular distribution of proteins can be obtained. While adherent cells of different tissue origin are relatively easy to prepare for imaging applications, non-adherent cells from hematopoietic origin, present a challenge due to their poor attachment to surfaces and subsequent loss of a substantial fraction of the cells. Still, these cell types represent an important part of the human proteome and express genes that are not expressed in adherent cell types. In the era of cell mapping efforts, overcoming the challenge with suspension cells for imaging applications would enable systematic profiling of hematopoietic cells. In this work, we successfully established an immunofluorescence protocol for preparation of suspension cell lines, peripheral blood mononucleated cells (PBMC) and human platelets on an adherent surface. The protocol is based on a multi-well plate format with automated sample preparation, allowing for robust high throughput imaging applications. In combination with confocal microscopy, the protocol enables systematic exploration of protein localization to all major subcellular structures.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Técnica del Anticuerpo Fluorescente/métodos , Animales , Adhesión Celular , Humanos , Células Jurkat , Robótica , Propiedades de Superficie , Suspensiones
9.
Science ; 356(6340)2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28495876

RESUMEN

Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.


Asunto(s)
Imagen Molecular , Orgánulos/química , Orgánulos/metabolismo , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteoma/metabolismo , Análisis de la Célula Individual , Línea Celular , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Espectrometría de Masas , Microscopía Fluorescente , Mapeo de Interacción de Proteínas , Proteoma/genética , Reproducibilidad de los Resultados , Fracciones Subcelulares , Transcriptoma
10.
J Proteome Res ; 16(1): 147-155, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27723985

RESUMEN

Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.


Asunto(s)
Anticuerpos/análisis , Técnica del Anticuerpo Fluorescente/normas , Microscopía Confocal/normas , Coloración y Etiquetado/métodos , Análisis de Varianza , Anticuerpos/química , Atlas como Asunto , Línea Celular , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...