Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 60(1): 27-46, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10832616

RESUMEN

Nuclear factor-kappaB (NF-kappaB) is a multiprotein complex that may regulate a variety of inflammatory cytokines involved in the initiation and progression of silicosis. The present study documents the ability of in vitro silica exposure to induce DNA-binding activity of NF-kappaB in a mouse peritoneal macrophage cell line (RAW264.7 cells) and investigates the role of reactive oxygen species (ROS) and/or protein tyrosine kinase in this activation. In vitro exposure of mouse macrophages to silica (100 microg/ml) resulted in a twofold increase in ROS production, measured as the generation of chemiluminescence (CL), and caused activation of NF-kappaB. Silica-induced CL was inhibited 100% by superoxide dismutase (SOD) and 75% by catalase, while NF-kappaB activation was inhibited by a variety of antioxidants (catalase, superoxide dismutase, alpha-tocopherol, pyrrolidine dithiocarbamate, or N-acetylcysteine). Further evidence for the involvement of ROS in NF-kappaB activation is that 1 mM H2O2 enhanced NF-kappaB/DNA binding and that this activation was inhibited by catalase. Specific inhibitors of protein tyrosine kinase, such as herbimycin A, genistein, and AG-494, prevented NF-kappaB activation in silica-treated cells. Genistein and AG-494 also reduced NF-kappaB activation in H2O2-treated cells. Results confirm that tyrosine phosphorylation of several cellular proteins (approximate molecular mass of 39, 58-70, and 103 kD) was increased in silica-exposed macrophages and that genistein inhibited this silica-induced phosphorylation. In contrast, inhibitors of protein kinase A or C, such as H89, staurosporin, calphostin C, and H7, had no marked inhibitory effect on silica-induced NF-kappaB activation. The results suggest that ROS may play a role in silica-induced NF-kappaB activation in macrophages and that phosphorylation events mediated by tyrosine kinase may be involved in this activation.


Asunto(s)
FN-kappa B/metabolismo , Proteínas Tirosina Quinasas/fisiología , Especies Reactivas de Oxígeno , Dióxido de Silicio/toxicidad , Animales , Línea Celular , ADN/metabolismo , Activación Enzimática , Macrófagos Peritoneales/metabolismo , Ratones , Fosforilación , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA