Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mucosal Immunol ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137882

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation. This was modeled in mice where we found that intestinal ILC3s express RIPK3, with conventional (c)ILC3s exhibiting high RIPK3 and low levels of pro-survival genes relative to lymphoid tissue inducer (LTi)-like ILC3s. ILC3-specific RIPK3 is promoted by gut microbiota, further upregulated following enteric infection, and dependent upon IL-23R and STAT3 signaling. However, lineage-specific deletion of RIPK3 revealed a redundant role in ILC3 survival, due to a blockade of RIPK3-mediated necroptosis by caspase 8, which was also activated in response to enteric infection. In contrast, lineage-specific deletion of caspase 8 resulted in loss of cILC3s from the healthy intestine and all ILC3 subsets during enteric infection, which increased pathogen burdens and gut inflammation. This function of caspase 8 required catalytic activity induced by TNF or TL1A and was dispensable if RIPK3 was simultaneously deleted. Caspase 8 activation and cell death were associated with increased Fas on ILC3s, and the Fas-FasL pathway was upregulated by cILC3s during enteric infection, which could restrain the abundance of intestinal ILC3s. Collectively, these data reveal that interpretation of key cytokine signals controls ILC3 survival following microbial challenge, and that an imbalance of these pathways, such as in IBD or across ILC3 subsets, provokes depletion of tissue-protective ILC3s from the inflamed intestine.

2.
Nature ; 630(8018): 976-983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867048

RESUMEN

Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.


Asunto(s)
Inmunidad Innata , Inflamación , Interleucina-23 , Linfocitos , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno CTLA-4/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Microbioma Gastrointestinal , Inflamación/inmunología , Inflamación/patología , Inflamación/metabolismo , Interleucina-23/inmunología , Intestinos/inmunología , Intestinos/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Análisis de Expresión Génica de una Sola Célula , Factor de Transcripción STAT3/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
3.
Cancer Immunol Res ; 11(12): 1571-1577, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37906619

RESUMEN

The Arthur and Sandra Irving Cancer Immunology Symposium has been created as a platform for established cancer immunologists to mentor trainees and young investigators as they launch their research career in the field. By sharing their different paths to success, the senior faculty mentors provide an invaluable resource to support the development of the next generation of leaders in the cancer immunology community. This Commentary describes some of the key topics that were discussed during the 2022 symposium: scientific and career trajectory, leadership, mentoring, collaborations, and publishing. For each of these topics, established investigators discussed the elements that facilitate success in these areas as well as mistakes that can hinder progress. Herein, we outline the critical points raised in these discussions for establishing a successful independent research career. These points are highly relevant for the broader scientific community.


Asunto(s)
Tutoría , Neoplasias , Médicos , Humanos , Mentores , Investigadores , Neoplasias/terapia
4.
Commun Biol ; 5(1): 1416, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566320

RESUMEN

On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Estructuras Linfoides Terciarias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Neoplasias Pulmonares/patología , Estructuras Linfoides Terciarias/metabolismo , Estructuras Linfoides Terciarias/patología , Linfocitos Infiltrantes de Tumor
5.
Cancer Immunol Res ; 10(11): 1292-1298, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36166399

RESUMEN

Immune checkpoint blockade has revolutionized opportunities for therapeutic intervention in cancer but demonstrates a low frequency of response in most patients and in some common types of tumors. An emerging paradigm supports the notion that trillions of normally beneficial microbes inhabiting the gastrointestinal tract, termed the microbiota, critically impact the success or failure of antitumor immunity induced by immune checkpoint blockade. Here, we briefly summarize the current knowledge on how interactions between the microbiota and immune system are contributing to the outcome of cancer immunotherapy. We propose that this immune-microbiota dialogue is particularly important in gastrointestinal cancers that exhibit striking resistance to immune checkpoint blockade and inherently develop in a unique environment that is rich in both immune-cell networks and direct exposure to the microbiota. Finally, we focus on how future studies should determine whether microbiota can be harnessed as a strategy to boost antitumor immunity in these contexts and beyond. See related article, p. 1291.


Asunto(s)
Neoplasias Gastrointestinales , Microbiota , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Sistema Inmunológico
6.
Nature ; 610(7933): 744-751, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071169

RESUMEN

Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.


Asunto(s)
Tolerancia Inmunológica , Intestinos , Linfocitos , Microbiota , Linfocitos T Reguladores , Animales , Inmunidad Innata , Integrina alfaV/metabolismo , Interleucina-2/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Microbiota/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Factores de Transcripción/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología
7.
Cell ; 184(19): 5015-5030.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34407392

RESUMEN

Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.


Asunto(s)
Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Progresión de la Enfermedad , Inmunidad Innata , Inmunoterapia , Linfocitos/inmunología , Animales , Comunicación Celular/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Neoplasias del Colon/microbiología , Heces/microbiología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata/efectos de los fármacos , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/patología , Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Invasividad Neoplásica , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Donantes de Tejidos
8.
Front Immunol ; 12: 626776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763071

RESUMEN

The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.


Asunto(s)
Linfocitos B/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Transcriptoma , Microambiente Tumoral/inmunología
9.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067317

RESUMEN

BACKGROUND: Natural killer (NK) cells play a crucial role in tumor immunosurveillance through their cytotoxic effector functions and their capacity to interact with other immune cells to build a coordinated antitumor immune response. Emerging data reveal NK cell dysfunction within the tumor microenvironment (TME) through checkpoint inhibitory molecules associated with a regulatory phenotype. OBJECTIVE: We aimed at analyzing the gene expression profile of intratumoral NK cells compared with non-tumorous NK cells, and to characterize their inhibitory function in the TME. METHODS: NK cells were sorted from human lung tumor tissue and compared with non- tumoral distant lungs. RESULTS: In the current study, we identify a unique gene signature of NK cell dysfunction in human non-small cell lung carcinoma (NSCLC). First, transcriptomic analysis reveals significant changes related to migratory pattern with a downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) and CX3C chemokine receptor 1 (CX3CR1) and overexpression of C-X-C chemokine receptor type 5 (CXCR5) and C-X-C chemokine receptor type 6 (CXCR6). Second, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and killer cell lectin like receptor (KLRC1) inhibitory molecules were increased in intratumoral NK cells, and CTLA-4 blockade could partially restore MHC class II level on dendritic cell (DC) that was impaired during the DCs/NK cell cross talk. Finally, NK cell density impacts the positive prognostic value of CD8+ T cells in NSCLC. CONCLUSIONS: These findings demonstrate novel molecular cues associated with NK cell inhibitory functions in NSCLC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Transcriptoma/genética , Humanos , Microambiente Tumoral
10.
Sci Immunol ; 4(40)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586011

RESUMEN

Group 3 innate lymphoid cells (ILC3s) critically orchestrate host-microbe interactions in the healthy mammalian intestine and become substantially impaired in the context of inflammatory bowel disease (IBD). However, the molecular pathways controlling the homeostasis of ILC3s remain incompletely defined. Here, we identify that intestinal ILC3s are highly enriched in expression of genes involved in the circadian clock and exhibit diurnal oscillations of these pathways in response to light cues. Classical ILC3 effector functions also exhibited diurnal oscillations, and lineage-specific deletion of BMAL1, a master regulator of the circadian clock, resulted in markedly reduced ILC3s selectively in the intestine. BMAL1-deficient ILC3s exhibit impaired expression of Nr1d1 and Per3, hyperactivation of RORγt-dependent target genes, and elevated proapoptotic pathways. Depletion of the microbiota with antibiotics partially reduced the hyperactivation of BMAL1-deficient ILC3s and restored cellular homeostasis in the intestine. Last, ILC3s isolated from the inflamed intestine of patients with IBD exhibit substantial alterations in expression of several circadian-related genes. Our results collectively define that circadian regulation is essential for the homeostasis of ILC3s in the presence of a complex intestinal microbiota and that this pathway is disrupted in the context of IBD.


Asunto(s)
Relojes Circadianos/inmunología , Microbioma Gastrointestinal/inmunología , Homeostasis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología
11.
Nature ; 568(7752): 405-409, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944470

RESUMEN

Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract1-4. The protective effects of IL-2 involve the generation, maintenance and function of regulatory T (Treg) cells4-8, and the use of low doses of IL-2 has emerged as a potential therapeutic strategy for patients with inflammatory bowel disease9. However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we show, in a mouse model, that IL-2 is acutely required to maintain Treg cells and immunological homeostasis throughout the gastrointestinal tract. Notably, lineage-specific deletion of IL-2 in T cells did not reduce Treg cells in the small intestine. Unbiased analyses revealed that, in the small intestine, group-3 innate lymphoid cells (ILC3s) are the dominant cellular source of IL-2, which is induced selectively by IL-1ß. Macrophages in the small intestine produce IL-1ß, and activation of this pathway involves MYD88- and NOD2-dependent sensing of the microbiota. Our loss-of-function studies show that ILC3-derived IL-2 is essential for maintaining Treg cells, immunological homeostasis and oral tolerance to dietary antigens in the small intestine. Furthermore, production of IL-2 by ILC3s was significantly reduced in the small intestine of patients with Crohn's disease, and this correlated with lower frequencies of Treg cells. Our results reveal a previously unappreciated pathway in which a microbiota- and IL-1ß-dependent axis promotes the production of IL-2 by ILC3s to orchestrate immune regulation in the intestine.


Asunto(s)
Inmunidad Innata/inmunología , Interleucina-2/inmunología , Intestinos/citología , Intestinos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos/administración & dosificación , Antígenos/inmunología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Femenino , Microbioma Gastrointestinal/inmunología , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-2/deficiencia , Interleucina-2/metabolismo , Intestino Delgado/citología , Intestino Delgado/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Adaptadora de Señalización NOD2/deficiencia , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Linfocitos T Reguladores/clasificación , Linfocitos T Reguladores/metabolismo
12.
J Immunother Cancer ; 6(1): 139, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30526667

RESUMEN

A high density of tumor-infiltrating CD8+ T cells and CD20+ B cells correlates with prolonged survival in patients with a wide variety of human cancers, including high-grade serous ovarian carcinoma (HGSC). However, the potential impact of mature dendritic cells (DCs) in shaping the immune contexture of HGSC, their role in the establishment of T cell-dependent antitumor immunity, and their potential prognostic value for HGSC patients remain unclear. We harnessed immunohistochemical tests and biomolecular analyses to demonstrate that a high density of tumor-infiltrating DC-LAMP+ DCs is robustly associated with an immune contexture characterized by TH1 polarization and cytotoxic activity. We showed that both mature DCs and CD20+ B cells play a critical role in the generation of a clinically-favorable cytotoxic immune response in HGSC microenvironment. In line with this notion, robust tumor infiltration by both DC-LAMP+ DCs and CD20+ B cells was associated with most favorable overall survival in two independent cohorts of chemotherapy-naïve HGSC patients. Our findings suggest that the presence of mature, DC-LAMP+ DCs in the tumor microenvironment may represent a novel, powerful prognostic biomarker for HGSC patients that reflects the activation of clinically-relevant anticancer immunity.


Asunto(s)
Carcinoma/inmunología , Carcinoma/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Microambiente Tumoral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Carcinoma/mortalidad , Células Dendríticas/metabolismo , Femenino , Humanos , Inmunohistoquímica , Inmunofenotipificación , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/terapia , Pronóstico , Modelos de Riesgos Proporcionales , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología
13.
Methods Mol Biol ; 1845: 119-137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141011

RESUMEN

Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been recently appreciated as a major driver of the local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to operate. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.


Asunto(s)
Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/patología , Transcriptoma , Perfilación de la Expresión Génica/métodos , Humanos , Captura por Microdisección con Láser/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
14.
Clin Cancer Res ; 24(22): 5710-5723, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29764856

RESUMEN

Purpose: By unlocking antitumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed.Experimental Design: We performed in-depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry, and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and PD-L1 expression, and a public clinical database was used to validate the results obtained.Results: We showed that distinct combinations of STK11, EGFR, and TP53 mutations were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations (TP53-mut/STK11-EGFR-WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T-cell density and PD-L1 expression. In this tumor subtype, pathways related to T-cell chemotaxis, immune cell cytotoxicity, and antigen processing were upregulated. Finally, a prolonged progression-free survival (PFS: HR = 0.32; 95% CI, 0.16-0.63, P < 0.001) was observed in anti-PD-1-treated patients harboring TP53-mut/STK11-EGFR-WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression.Conclusions: Our study reveals that different combinations of TP53, EGFR, and STK11 mutations, together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Clin Cancer Res; 24(22); 5710-23. ©2018 AACR.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Antineoplásicos Inmunológicos/farmacología , Inmunomodulación/genética , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Presentación de Antígeno/inmunología , Biomarcadores de Tumor , Línea Celular Tumoral , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Citotoxicidad Inmunológica/inmunología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Am J Respir Crit Care Med ; 198(7): 928-940, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29518341

RESUMEN

RATIONALE: Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. OBJECTIVES: To study the impact of COPD on the immune contexture of non-small cell lung cancer. METHODS: We performed in-depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patient survival (n = 435). Tumor-infiltrating T lymphocyte (TIL) exhaustion by flow cytometry (n = 50) was also investigated. The effectiveness of an anti-PD-1 (programmed cell death-1) treatment (nivolumab) was evaluated in 39 patients with advanced-stage non-small cell lung cancer. All data were analyzed according to patient COPD status. MEASUREMENTS AND MAIN RESULTS: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 (programmed cell death ligand 1) expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 patients with advanced-stage non-small cell lung cancer treated by an anti-PD-1 antibody showed longer progression-free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. CONCLUSIONS: COPD is associated with an increased sensitivity of CD8 tumor-infiltrating T lymphocytes to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Microambiente Tumoral/inmunología , Anciano , Análisis de Varianza , Biopsia con Aguja , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Enfermedad Pulmonar Obstructiva Crónica/patología , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia
16.
Am J Respir Crit Care Med ; 194(11): 1403-1412, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27299180

RESUMEN

RATIONALE: Tumor-infiltrating immune cells affect lung cancer outcome. However, the factors that influence the composition and function of the tumor immune environment remain poorly defined and need investigation, particularly in the era of immunotherapy. OBJECTIVES: To determine whether the tumoral immune environment is related to lung adenocarcinoma mutations. METHODS: This retrospective cohort included 316 consecutive patients with lung adenocarcinoma (225 men; 258 smokers) studied from 2001 to 2005 in a single center. We investigated the association of densities of intratumoral mature dendritic cells (mDCs), CD8+ T cells, neutrophils, and macrophages with clinical and pathological variables and tumor cell mutation profiles obtained by next-generation sequencing. MEASUREMENTS AND MAIN RESULTS: In 282 tumors, we found 460 mutations, mainly in TP53 (59%), KRAS (40%), STK11 (24%), and EGFR (14%). Intratumoral CD8+ T-cell density was high in smokers (P = 0.02) and TP53-mutated tumors (P = 0.02) and low in BRAF-mutated tumors (P = 0.005). Intratumoral mDC density was high with low pathological tumor stage (P = 0.01) and low with STK11 mutation (P = 0.004). Intratumoral neutrophil density was high and low with BRAF mutation (P = 0.04) and EGFR mutation (P = 0.02), respectively. Intratumoral macrophage density was low with EGFR mutation (P = 0.01). Intratumoral CD8+ T-cell and mDC densities remained strong independent markers of overall survival (P = 0.001 and P = 0.02, respectively). CONCLUSIONS: Intratumoral immune cell densities (mDCs, CD8+ T cells, neutrophils, macrophages) were significantly associated with molecular alterations in adenocarcinoma underlying the interactions between cancer cells and their microenvironment.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Recuento de Células , Estudios de Cohortes , Femenino , Humanos , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
17.
Immunity ; 44(3): 634-646, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26982365

RESUMEN

Physical separation between the mammalian immune system and commensal bacteria is necessary to limit chronic inflammation. However, selective species of commensal bacteria can reside within intestinal lymphoid tissues of healthy mammals. Here, we demonstrate that lymphoid-tissue-resident commensal bacteria (LRC) colonized murine dendritic cells and modulated their cytokine production. In germ-free and antibiotic-treated mice, LRCs colonized intestinal lymphoid tissues and induced multiple members of the IL-10 cytokine family, including dendritic-cell-derived IL-10 and group 3 innate lymphoid cell (ILC3)-derived IL-22. Notably, IL-10 limited the development of pro-inflammatory Th17 cell responses, and IL-22 production enhanced LRC colonization in the steady state. Furthermore, LRC colonization protected mice from lethal intestinal damage in an IL-10-IL-10R-dependent manner. Collectively, our data reveal a unique host-commensal-bacteria dialog whereby selective subsets of commensal bacteria interact with dendritic cells to facilitate tissue-specific responses that are mutually beneficial for both the host and the microbe.


Asunto(s)
Infecciones por Bordetella/inmunología , Bordetella/inmunología , Células Dendríticas/inmunología , Interleucina-10/metabolismo , Intestinos/inmunología , Tejido Linfoide/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/microbiología , Interleucina-10/genética , Interleucinas/genética , Interleucinas/metabolismo , Intestinos/microbiología , Tejido Linfoide/microbiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Simbiosis/genética , Células Th17/microbiología , Interleucina-22
18.
Cancer Res ; 76(7): 1746-56, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26842877

RESUMEN

A high density of tumor-infiltrating mature dendritic cells (DC) and CD8(+) T cells correlates with a positive prognosis in a majority of human cancers. The recruitment of activated lymphocytes to the tumor microenvironment, primed to recognize tumor-associated antigens, can occur in response to immunogenic cell death (ICD) of tumor cells. ICD is characterized by the preapoptotic translocation of calreticulin (CRT) from the endoplasmic reticulum (ER) to the cell surface as a result of an ER stress response accompanied by the phosphorylation of eukaryotic initiation factor 2α (eIF2α). We conducted a retrospective study on two independent cohorts of patients with non-small cell lung cancer (NSCLC) to investigate the prognostic potential of CRT. We report that the level of CRT expression on tumor cells, which correlated with eIF2α phosphorylation, positively influenced the clinical outcome of NSCLC. High CRT expression on tumor cells was associated with a higher density of infiltrating mature DC and effector memory T-cell subsets, suggesting that CRT triggers the activation of adaptive immune responses in the tumor microenvironment. Accordingly, patients with elevated CRT expression and dense intratumoral infiltration by DC or CD8(+) T lymphocytes had the best prognosis. We conclude that CRT expression constitutes a new powerful prognostic biomarker that reflects enhanced local antitumor immune responses in the lung. Cancer Res; 76(7); 1746-56. ©2016 AACR.


Asunto(s)
Calreticulina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Estudios de Cohortes , Humanos , Neoplasias Pulmonares/mortalidad , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Subgrupos de Linfocitos T/metabolismo
19.
Int Immunol ; 28(1): 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26451009

RESUMEN

A delicate balance exists between the mammalian immune system and normally beneficial commensal bacteria that colonize the gastrointestinal tract, which is necessary to maintain tissue homeostasis. Dysregulation of these interactions between the host and commensal bacteria is causally associated with chronic inflammation and the development of cancer. In contrast, recent reports have highlighted that commensal bacteria also play an essential role in promoting anti-tumor immune responses in several contexts, highlighting a paradox whereby interactions between the host and commensal bacteria can influence both pro- and anti-tumor immunity. Given the critical roles for group 3 innate lymphoid cells (ILC3s) in regulating inflammation, tissue repair and host-microbe interactions in the intestine, here we discuss new evidence that ILC3s may profoundly influence the development, progression and control of tumors. In this review, we provide an overview of recent advances in understanding the impact of commensal bacteria on tumorigenesis, discuss recent findings identifying ILC3s as critical regulators of host-microbe interactions and highlight the emerging role of this immune cell population in cancer and their potential implication as a therapeutic target.


Asunto(s)
Inmunoterapia , Inflamación/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Neoplasias/inmunología , Animales , Carcinogénesis , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Mucosa Intestinal/microbiología , Linfocitos/microbiología , Simbiosis
20.
Oncoimmunology ; 5(12): e1255394, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123901

RESUMEN

There is now growing evidence that the immune contexture influences cancer progression and clinical outcome of patients with non-small cell lung cancer (NSCLC). If chemotherapy is widely used to treat patients with advanced-stage NSCLC, it remains unclear how it could modify the immune contexture and impact its prognostic value. Here, we analyzed two retrospective cohorts, respectively composed of 122 stage III-N2 NSCLC patients treated with chemotherapy before surgery and 39 stage-matched patients treated by surgery only. In patients treated with neoadjuvant chemotherapy, the histological characteristics, the expression of PD-L1 protein, and the tumor immune microenvironment (CD8+ T cells, DC-LAMP+ mature dendritic cells, and CD68+ macrophages) were evaluated and their prognostic value assessed together with standard clinical parameters. By analyzing pre- and post-treatment specimens, we did not find any changes in the PD-L1 expression. We also found that the tumor immune contexture in patients treated with neoadjuvant chemotherapy exhibited a similar pattern that the one found in chemotherapy-naive patients, with comparable densities of tumor-infiltrating CD8+ and DC-LAMP+ cells and a similar spatial organization. The percentage of residual viable tumor cells and the immune pattern (CD8+ and DC-LAMP+ cell densities) were significantly associated with the clinical outcome and allowed the identification of short- and long-term survivors, respectively. In multivariate analysis, the immune pattern was found to be the strongest independent prognostic factor. In conclusion, this study decrypts the complex interplay between cancer and immune cells in patients undergoing chemotherapy and supports potential beneficial synergistic effect of immunotherapy and chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...