Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(10): e0275584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240169

RESUMEN

Individuals with Parkinson's disease (PD) present respiratory dysfunctions, mainly due to decreased chest wall expansion, which worsens with the course of the disease. These findings contribute to the restrictive respiratory pattern and the reduction in chest wall volume. According to literature, inspiratory muscle thixotropic conditioning maneuvers may improve lung volumes in these patients. The study aimed to determine the after-effects of respiratory muscle thixotropic maneuvers on breathing patterns and chest wall volumes of PD. A crossover study was performed with twelve patients with PD (8 males; mean age 63.9±8.8 years, FVC%pred 89.7±13.9, FEV1%pred 91.2±15, FEV1/FVC%pred 83.7±5.7). Chest wall volumes were assessed using OEP during thixotropic maneuvers. Increases in EIVCW (mean of 126mL, p = 0.01) and EEVCW (mean of 150mL, p = 0.005) were observed after DITLC (deep inspiration from total lung capacity) due to increases in pulmonary (RCp) and abdominal (RCa) ribcage compartments. Changes in ICoTLC (inspiratory contraction from TLC) led to significant EIVCW (mean of 224mL, p = 0.001) and EEVCW (mean of 229mL, p = 0.02) increases that were mainly observed in the RCp. No significant changes were found when performing DERV (deep expiration from residual volume) and ICoRV (Inspiratory contraction from RV). Positive correlations were also observed between the degree of inspiratory contraction during ICoTLC and EEVRCp (rho = 0.613, p = 0.03) and EIVRCp (rho = 0.697, p = 0.01) changes. Thixotropy conditioning of inspiratory muscles at an inflated chest wall volume increases EIVCW and EEVCW in the ten subsequent breaths in PD patients. These maneuvers are easy to perform, free of equipment, low-cost, and may help patients improve chest wall volumes during rehabilitation.


Asunto(s)
Enfermedad de Parkinson , Pared Torácica , Anciano , Humanos , Masculino , Persona de Mediana Edad , Estudios Cruzados , Mediciones del Volumen Pulmonar , Mecánica Respiratoria , Músculos Respiratorios , Femenino
2.
Braz J Phys Ther ; 24(3): 240-248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30967355

RESUMEN

OBJECTIVE: We evaluated the effects of posture, sex, and age on breathing pattern and chest wall motion during quiet breathing in healthy participants. METHODS: Eighty-three participants aged 42.72 (SD=21.74) years presenting normal pulmonary function were evaluated by optoelectronic plethysmography in the seated, inclined (with 45° of trunk inclination), and supine positions. This method allowed to assess the chest wall in a three dimensional way considering the chest wall as three compartments: pulmonary rib cage, abdominal rib cage and abdomen. RESULTS: Posture influenced all variables of breathing pattern and chest wall motion, except respiratory rate and duty cycle. Chest wall tidal volume and minute ventilation were reduced (p<0.05) in both sexes from seated to inclined and from seated to supine positions, mainly in males. Moreover, moving from seated to supine position significantly increased the percentage contribution of the abdomen to the tidal volume in both sexes (p<0.0001). Regarding sex, women showed higher contribution of thoracic compartment compared to men (p=0.008). Aging provided reductions on rib cage contributions to tidal volume that were compensated by increases of abdomen contributions (p<0.0001). In addition, increases in end-inspiratory and end-expiratory volumes over the years were observed. CONCLUSION: The degree of contribution of chest wall compartments is dependent on posture, sex, and age. Therefore, verticalization increases expansion of pulmonary rib cage as well as horizontalization increases abdominal displacement. Women presented higher thoracic contribution to tidal volume than men. Aging reduces rib cage contributions to tidal volume that were compensated by increases of abdomen contributions.


Asunto(s)
Abdomen/fisiología , Pulmón/fisiología , Pletismografía/métodos , Postura/fisiología , Pared Torácica/fisiopatología , Femenino , Voluntarios Sanos , Humanos , Masculino , Respiración , Volumen de Ventilación Pulmonar
3.
Front Physiol ; 10: 1376, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736792

RESUMEN

The volumes assessed by optoelectronic plethysmography (OEP) and based on a three-compartmental model provide an accurate breath-by-breath index of expiratory and inspiratory (ribcage muscles and diaphragm) muscle length. Thus, after performing thixotropic maneuvers, OEP may also provide evidence regarding the history-dependent properties of these muscles. We studied the after-effects of different thixotropic conditionings on chest wall (CW) and compartmental operational volumes of 28 healthy subjects (25.5 ± 2.2 years, FVC%pred 94.8 ± 5.5, and FEV1 %pred 95.5 ± 8.9) using OEP. Conditionings were composed of inspiratory or expiratory contractions performed from total lung capacity (TLC) or residual volume (RV). The study protocol was composed of three consecutive contractions of the same maneuver, with 60 s of spontaneous breathing in between, and after-effects were studied in the first seven respiratory cycles of each contraction. Cumulative effects were also assessed by comparing the after-effects of each thixotropic maneuver. Inspiratory contractions performed from both TLC and RV acutely increased end-inspiratory (EIV) CW volumes (all p < 0.0001), mainly on both upper and lower ribcage compartments (i.e., non-diaphragmatic inspiratory muscles and diaphragm, respectively); while, expiratory contractions from RV decreased CW volumes (p < 0.0001) by reducing the upper ribcage and abdominal volumes (all p < 0.0001). The response of the thixotropic maneuvers did not present a cumulative effect. In healthy, the use of the three-compartmental model through OEP allows a detailed assessment of the diaphragm, inspiratory and expiratory muscle thixotropy. Furthermore, specific conditioning maneuvers led to thixotropy of the inspiratory ribcage, diaphragm, and expiratory muscles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA