Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 109023, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39163828

RESUMEN

Flow-diverter stents offer clinicians an effective solution for treating intracranial aneurysms, especially in cases where other devices may be unsuitable. However, strongly deviating success rates among different centres, manufacturers, and aneurysm phenotypes highlight the need for better in-situ studies of these devices. To support research in this area, virtual stenting algorithms have been proposed that, combined with computational fluid dynamics, provide insights into the hemodynamic alterations induced by the device. Yet, many existing algorithms rely on uncertain parameters, such as the forces applied during operation, fail to predict the length of the device after deployment, or lack robust validation steps, raising concerns about their reliability. Therefore, we developed a robust deployment technique that builds upon the geometrical features of the vessel and includes advancements from previous works. The algorithm is detailed and validated against literature examples, in-vitro experiments, and patient data, achieving a mean angular error below 5° in the latter. Furthermore, we describe and demonstrate how the deployed device can be embedded in a computational mesh using open-source tools and anisotropic meshing routines.


Asunto(s)
Algoritmos , Hemodinámica , Aneurisma Intracraneal , Modelos Cardiovasculares , Stents , Humanos , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/terapia , Aneurisma Intracraneal/cirugía , Hemodinámica/fisiología , Simulación por Computador
2.
Front Bioeng Biotechnol ; 12: 1433811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007055

RESUMEN

Advances in computational fluid dynamics continuously extend the comprehension of aneurysm growth and rupture, intending to assist physicians in devising effective treatment strategies. While most studies have first modelled intracranial aneurysm walls as fully rigid with a focus on understanding blood flow characteristics, some researchers further introduced Fluid-Structure Interaction (FSI) and reported notable haemodynamic alterations for a few aneurysm cases when considering wall compliance. In this work, we explore further this research direction by studying 101 intracranial sidewall aneurysms, emphasizing the differences between rigid and deformable-wall simulations. The proposed dataset along with simulation parameters are shared for the sake of reproducibility. A wide range of haemodynamic patterns has been statistically analyzed with a particular focus on the impact of the wall modelling choice. Notable deviations in flow characteristics and commonly employed risk indicators are reported, particularly with near-dome blood recirculations being significantly impacted by the pulsating dynamics of the walls. This leads to substantial fluctuations in the sac-averaged oscillatory shear index, ranging from -36% to +674% of the standard rigid-wall value. Going a step further, haemodynamics obtained when simulating a flow-diverter stent modelled in conjunction with FSI are showcased for the first time, revealing a 73% increase in systolic sac-average velocity for the compliant-wall setting compared to its rigid counterpart. This last finding demonstrates the decisive impact that FSI modelling can have in predicting treatment outcomes.

3.
Bioengineering (Basel) ; 11(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534544

RESUMEN

Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA