Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Ruso | MEDLINE | ID: mdl-28665384

RESUMEN

The median overall survival of glioblastoma patients is about 15 months. Only a small number of patients survive 3 years. The factors of a favorable prognosis for the 'longevity phenomenon' in glioblastoma patients are not fully understood. OBJECTIVE: to determine the occurrence rate of long-living patients with glioblastomas, identify clinical predictors of a favorable prognosis, and identify the presence and prognostic significance of an IDH1 mutation. MATERIAL AND METHODS: Among 1494 patients operated on for glioblastoma at the Burdenko Neurosurgical Institute from 2007 to 2012, there were 84 (5.6%) patients who lived more than 3 years after primary surgery. In all the cases, histological specimens were reviewed, and immunohistochemical detection of a mutant IDH1 protein was performed. Overall survival was calculated from the time of first surgery to the date of the last consultation or death, and the recurrence-free period was calculated from the time of first surgery to MRI-verified tumor progression. RESULTS: The median age of long-living patients with glioblastoma was 45 years (19-65 years). All tumors were located supratentorially. The median Karnofsky performance status score at the time of surgery was 80 (range, 70-100). All patients underwent microsurgical resection of the tumor, followed by chemoradiotherapy. The median recurrence-free period was 36 months (5-98 months). Overall survival of 48, 60, and 84 months was achieved in 23, 15 and 6% of patients, respectively. Among 49 specimens available for the IDH1 analysis, 14 (28.6%) specimens had a mutant protein. There was no significant difference in survival rates in patients with positive and negative results for IDH1 (44.1 vs. 40.8 months; p>0.05). CONCLUSION: The significance of various factors that may be predictors of a favorable course of the disease is discussed in the literature. This work is the first part of analysis of prognostically significant factors positively affecting overall survival of glioblastoma patients. In our series, the predictors of a favorable prognosis for long-living patients with the verified diagnosis of glioblastoma were as follows: young age, the supratentorial location of the tumor, a high Karnofsky score before surgery, and tumor resection. In our series, we used immunohistochemical tests and found no prognostic significance of the IDH1 gene mutation; further analysis will require application of direct sequencing. We plan to study other morphological and molecular genetic features of tumors, which explain prolonged survival of glioblastoma patients, as well as the role of various types of combined chemoradiation treatment.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Glioblastoma/mortalidad , Isocitrato Deshidrogenasa/genética , Adulto , Factores de Edad , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Supervivencia sin Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
2.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-28291210

RESUMEN

BACKGROUND: Anatomy of the conduction tracts of the cerebral cortex has been studied for a long time. Invention of diffusion tensor tractography renewed interest in this subject. The objectives of this work were to develop and improve protocols for dissection of the long association tracts of the human brain with studying the features of their segmentation, topography, and variability, compare the obtained data with the MR tractography data, and prepare for further clinical and anatomical studies. MATERIAL AND METHODS: We used 18 cerebral hemispheres (from 10 males and 8 females; 9 left and 9 right hemispheres). The mean age of cadavers was 68 years. Specimen were fixated in accordance with the Klingler technique. Immediately after collection, specimens were placed in a 10% formalin solution for at least 4 weeks. After that, the pia was removed; specimens were frozen at -20 °C for a week and then unfrozen in a 96% ethanol solution for a day. We performed 10 lateral dissections, 2 lateral dissections with isolation of the frontal aslant tract, 2 basal dissections, 1 combined basolateral dissection, 2 frontal dissections, and 1 medial dissection. At the time of dissection and after it, specimens were stored in a 96% ethanol solution. Modified, disposable, therapeutic wooden spatulas were used for manipulations. A microscope (magnification of 6-40x) was used in 2 lateral and 2 basal dissections. MR tractography (HARDI-CSD) was carried out in 5 healthy volunteers using a GE Signa HDxt MRI scanner a field strength of 3.0 T. RESULTS: We clearly identified the following fascicles: the arcuate fascicle (AF) and superior longitudinal fascicle (SLF) in 6/6 hemispheres on the right and in 5/6 hemispheres on the left, the inferior longitudinal fascicle (ILF) in 3/6 hemispheres on the left and in 4/6 hemispheres on the right, the uncinate fascicle (UF) in 4/4 hemispheres on the left and in 4/4 hemispheres on the right, and the inferior fronto-occipital fascicle (IFOF) in 4/4 hemispheres on the left and in 3/4 hemispheres on the right. Identification was less successful in the case of the frontal aslant tract (FAT) in 1/2 hemispheres on the left and in 0/2 hemispheres on the right. The used technique failed to identify the vertical occipital fascicle (VOF) of Wernicke, a segment of the superior longitudinal fascicle SLF I, and the middle longitudinal fascicle (MdLF). The MR tractography HARDI-CSD data were compared with the dissection data. We described in detail segmentation of the superior longitudinal, arcuate, and inferior fronto-occipital fascicles. Contradictory data were obtained for the superior longitudinal fascicle: a two-segment structure (SLFh and SLFv) was found in most (10/12) specimens, while a three-segment structure was revealed in the other (2/12) specimens (identified SLF II and SLF III). In the arcuate fascicle, the ventral and dorsal segments were successfully identified in 2/12 cases (1 left and 1 right), whereas identification failed in the other cases. During dissection of the inferior fronto-occipital fascicle, we could identify its surface layer in 1 of 8 cases (left) and its deep layer in one more case (left). CONCLUSION: Examination of the long association tracts using the Klingler technique has significant limitations in the fiber intersection areas (sagittal striatum). The frontal aslant tract was least studied; we proposed a special anterior dissection technique for its isolation. The superior longitudinal fascicle can have both the two-segment (10/12) and three-segment (2/12) structure. Investigation of the segmental anatomy of the long association tracts will be continued in further dissections. When planning neurosurgical interventions in the projection areas of the long association tracts, both preoperative HARDI-tractography and anatomical dissections ex vivo, based on the proposed protocols, can be recommended for the operating surgeon to master a three-dimensional picture of the tract topography.


Asunto(s)
Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Anciano , Femenino , Humanos , Masculino
3.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-26528619

RESUMEN

In this paper, we present a review of current literature on the application of intraoperative fluorescence diagnosis and fluorescence spectroscopy using 5-aminolevulinic acid in surgery for various types of brain tumors, both alone and in combination with other neuroimaging methods. Authors' extensive experience with these methods allowed them to develop a set of clinical guidelines for the use of intraoperative fluorescence diagnosis and fluorescence spectroscopy in surgery of brain tumors.


Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas/patología , Glioma/patología , Monitoreo Intraoperatorio/métodos , Neuroimagen/métodos , Procedimientos Neuroquirúrgicos , Fármacos Fotosensibilizantes , Neoplasias Encefálicas/cirugía , Glioma/cirugía , Humanos , Microscopía Fluorescente , Guías de Práctica Clínica como Asunto , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...