Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425871

RESUMEN

The gammaherpesviruses (γHVs) establish a lifelong infection in their hosts, with the cellular outcome of infection intimately regulated by target cell type. Murine gammaherpesvirus 68 (MHV68), a small animal model of γHV infection, infects macrophages in vivo, resulting in a range of outcomes, from lytic replication to latent infection. Here, we have further investigated the nature of MHV68 macrophage infection using reductionist and primary in vivo infection studies. While MHV68 readily infected the J774 macrophage cell line, viral gene expression and replication were significantly impaired relative to a fully permissive fibroblast cell line. Lytic replication only occurred in a small subset of MHV68-infected J774 cells, despite the fact that these cells were fully competent to support lytic replication following pre-treatment with interleukin-4, a known potentiator of replication in macrophages. In parallel, we harvested virally-infected macrophages at 16 hours after MHV68 infection in vivo and analyzed gene expression by single cell RNA-sequencing. Among virally infected macrophages, only rare (0.25%) cells had lytic cycle gene expression, characterized by detection of multiple lytic cycle RNAs. In contrast, ~50% of virally-infected macrophages were characterized by expression of ORF75A, ORF75B and/or ORF75C, in the absence of other detectable viral RNAs. Selective transcription of the ORF75 locus also occurred in MHV68-infected J774 cells. In total, these studies indicate that MHV68 efficiently infects macrophages, with the majority of cells characterized by an atypical state of restricted viral transcription, and only rare cells undergoing lytic replication.

2.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37184563

RESUMEN

Recent evidence suggests a role for B cells in the pathogenesis of young-onset type 1 diabetes (T1D), wherein rapid progression occurs. However, little is known regarding the specificity, phenotype, and function of B cells in young-onset T1D. We performed a cross-sectional analysis comparing insulin-reactive to tetanus-reactive B cells in the blood of T1D and controls using mass cytometry. Unsupervised clustering revealed the existence of a highly activated B cell subset we term BND2 that falls within the previously defined anergic BND subset. We found a specific increase in the frequency of insulin-reactive BND2 cells in the blood of young-onset T1D donors, which was further enriched in the pancreatic lymph nodes of T1D donors. The frequency of insulin-binding BND2 cells correlated with anti-insulin autoantibody levels. We demonstrate BND2 cells are pre-plasma cells and can likely act as APCs to T cells. These findings identify an antigen-specific B cell subset that may play a role in the rapid progression of young-onset T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Estudios Transversales , Linfocitos B , Linfocitos T , Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA