Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(16): e23884, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39135512

RESUMEN

The inhibition of the autophagolysosomal pathway mediated by transcription factor EB (TFEB) inactivation in proximal tubular epithelial cells (TECs) is a key mechanism of TEC injury in diabetic kidney disease (DKD). Acetylation is a novel mechanism that regulates TFEB activity. However, there are currently no studies on whether the adjustment of the acetylation level of TFEB can reduce the damage of diabetic TECs. In this study, we investigated the effect of Trichostatin A (TSA), a typical deacetylase inhibitor, on TFEB activity and damage to TECs in both in vivo and in vitro models of DKD. Here, we show that TSA treatment can alleviate the pathological damage of glomeruli and renal tubules and delay the DKD progression in db/db mice, which is associated with the increased expression of TFEB and its downstream genes. In vitro studies further confirmed that TSA treatment can upregulate the acetylation level of TFEB, promote its nuclear translocation, and activate the expression of its downstream genes, thereby reducing the apoptosis level of TECs. TFEB deletion or HDAC6 knockdown in TECs can counteract the activation effect of TSA on autophagolysosomal pathway. We also found that TFEB enhances the transcription of Tfeb through binding to its promoter and promotes its own expression. Our results, thus, provide a novel therapeutic mechanism for DKD that the alleviation of TEC damage by activating the autophagic lysosomal pathway through upregulating TFEB acetylation can, thus, delay DKD progression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Nefropatías Diabéticas , Células Epiteliales , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Túbulos Renales Proximales , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Nefropatías Diabéticas/metabolismo , Ratones , Acetilación , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ácidos Hidroxámicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Masculino , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos
2.
Cell Death Discov ; 10(1): 84, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365838

RESUMEN

Transcription factor EB (TFEB), known as a major transcriptional regulator of the autophagy-lysosomal pathway, regulates target gene expression by binding to coordinated lysosomal expression and regulation (CLEAR) elements. TFEB are regulated by multiple links, such as transcriptional regulation, post-transcriptional regulation, translational-level regulation, post-translational modification (PTM), and nuclear competitive regulation. Targeted regulation of TFEB has been victoriously used as a treatment strategy in several disease models such as ischemic injury, lysosomal storage disorders (LSDs), cancer, metabolic disorders, neurodegenerative diseases, and inflammation. In this review, we aimed to elucidate the regulatory mechanism of TFEB and its applications in several disease models by targeting the regulation of TFEB as a treatment strategy.

4.
Theranostics ; 13(4): 1311-1324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923529

RESUMEN

Rationale: Mammalian renal proximal tubules can partially regenerate after acute kidney injury (AKI). However, cells participating in the renal proximal tubule regeneration remain to be elucidated. Wilms' tumor 1 (WT1) expresses in a subtype of glomeruli parietal epithelial cells (PECs) in adult kidneys, it remains unclear whether these WT1+ PECs play a role in renal regeneration/repair after AKI. Methods: Ischemia-reperfusion injury (IRI) mouse model was used to investigate the expression pattern of WT1 in the kidney after severe AKI. Conditional deletion of WT1 gene mice were generated using Pax8CreERT2 and WT1fl/fl mice to examine the function of WT1. Then, genetic cell lineage tracing and single-cell RNA sequencing were performed to illustrate that WT1+ PECs develop into WT1+ proximal tubular epithelial cells (PTECs). Furthermore, in vitro clonogenicity, direct differentiation analysis and in vivo transplantation were used to reveal the stem cell-like properties of these WT1+ PECs. Results: The expression of WT1 protein in PECs and PTECs was increased after severe AKI. Conditional deletion of WT1 gene in PTECs and PECs aggravated renal tubular injury after severe AKI. WT1+ PECs develop into WT1+ PTECs via the transient scattered tubular cell stage, and these WT1+ PECs possess specific stem cell-like properties. Conclusions: We discovered a group of WT1+ PECs that promote renal proximal tubule regeneration/repair after severe AKI, and the expression of WT1 in PECs and PTECs is essential for renal proximal tubule regeneration after severe kidney injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Túbulos Renales/patología , Riñón/patología , Túbulos Renales Proximales/metabolismo , Lesión Renal Aguda/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Daño por Reperfusión/metabolismo , Mamíferos , Proteínas WT1/genética , Proteínas WT1/metabolismo
5.
Cell Death Discov ; 9(1): 93, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906611

RESUMEN

TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.

6.
Mutat Res ; 825: 111790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35841832

RESUMEN

Acute kidney injury (AKI) is a common clinical disease that can cause serious harm to the kidneys, but it has no effective treatment till now. The modulation of autophagy pathway regulation is considered a potentially effective therapeutic approach in AKI prevention and treatment. ZKSCAN3 has been shown to be an important transcription factor that negatively regulates autophagy activity in cancer tissues. In order to determine whether autophagy could be activated by knocking out ZKSCAN3 to exert the renal protective effect of autophagy, we constructed AKI models with Zkscan3 knockout (KO) mice and detected renal pathological changes and renal function changes as well as autophagy-related indicators. We found that Zkscan3 KO had no significant effect on kidney development. Besides, no significant changes in autophagy activity were observed under normal physiological or AKI conditions. In non-tumor tissues, ZKSCAN3 did not mediate transcriptional regulation of autophagy-related genes. These findings suggest that because ZKSCAN3 may not function in the transcriptional regulation of autophagy-related genes in non-tumor tissues, it may not be used as a therapeutic target for AKI.


Asunto(s)
Lesión Renal Aguda , Autofagia , Factores de Transcripción , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cell Death Discov ; 8(1): 239, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501332

RESUMEN

Acute kidney injury (AKI) is a common clinical condition associated with high morbidity and mortality. The pathogenesis of AKI has not been fully elucidated, with a lack of effective treatment. Renal tubular epithelial cells (TECs) play an important role in AKI, and their damage and repair largely determine the progression and prognosis of AKI. In recent decades, it has been found that the mitochondria, endoplasmic reticulum (ER), lysosomes, and other organelles in TECs are damaged to varying degrees in AKI, and that they can influence each other through various signaling mechanisms that affect the recovery of TECs. However, the association between these multifaceted signaling platforms, particularly between mitochondria and lysosomes during AKI remains unclear. This review summarizes the specific pathophysiological mechanisms of the main TECs organelles in the context of AKI, particularly the potential interactions among them, in order to provide insights into possible novel treatment strategies.

8.
Dis Model Mech ; 14(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437681

RESUMEN

Aging is a multifaceted process regulated by multiple cellular pathways, including the proteostasis network. Pharmacological or genetic enhancement of the intracellular proteostasis network extends lifespan and prevents age-related diseases. However, how proteostasis is regulated in different tissues throughout the aging process remains unclear. Here, we show that Drosophila homologs of Cubilin- and Amnionless (dCubilin and dAMN, respectively)-mediated protein reabsorption (CAMPR) from hemolymph insect blood by nephrocytes modulate longevity through regulating proteostasis in muscle and brain tissues. We find that overexpression of dAMN receptor in nephrocytes extends lifespan, whereas nephrocyte-specific dCubilin or dAMN RNAi knockdown shortens lifespan. We also show that CAMPR in nephrocytes regulates proteostasis in hemolymph and improves healthspan. In addition, we show that enhanced CAMPR in nephrocytes slows down the aging process in muscle and brain by maintaining the proteostasis network in these tissues. Altogether, our work has revealed an inter-organ communication network across nephrocytes and muscle/neuronal tissue that is essential for maintaining proteostasis, and to delay senescence in these organs. These findings provide insight into the role of renal protein reabsorption in the aging process via this tele-proteostasis network.


Asunto(s)
Proteínas de Drosophila , Drosophila , Envejecimiento/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidad , Proteostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...