Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 38(16): e101284, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31294866

RESUMEN

The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Replicación del ADN , Técnicas de Silenciamiento del Gen/métodos , Neoplasias/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilación , Origen de Réplica
2.
Elife ; 52016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27740454

RESUMEN

The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21's PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis.


Asunto(s)
División Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Replicación del ADN , ADN/biosíntesis , Inestabilidad Genómica , Células Cultivadas , Humanos
3.
Mutat Res Rev Mutat Res ; 763: 168-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25795119

RESUMEN

Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Replicación del ADN , ADN/metabolismo , Proteínas Quinasas/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Modelos Genéticos , Fosforilación , Proteínas/metabolismo , Origen de Réplica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA