Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 101(6-1): 063206, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688561

RESUMEN

A model based on optical Bloch equations is developed to describe the interaction of femtosecond laser pulses with dielectric solids, accounting for optical-cycle-resolved electron dynamics. It includes the main physical processes at play: photoionization, impact ionization, direct and collisional laser heating, and recombination. By using an electron band structure, this approach also accounts for material optical properties as nonlinear polarization response. Various studies are performed, shedding light on the contribution of various processes to the full electron dynamics depending on laser intensity and wavelength. In particular, the standard influence of the impact ionization process is retrieved.

2.
Opt Express ; 25(5): 4720-4740, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380743

RESUMEN

We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.

3.
Sci Rep ; 6: 26743, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255689

RESUMEN

We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

4.
Phys Rev Lett ; 116(6): 063902, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26918992

RESUMEN

We have solved the long-standing problem of the mechanism of terahertz (THz) generation by a two-color filament in air and found that both neutrals and plasma contribute to the radiation. We reveal that the contribution from neutrals by four-wave mixing is much weaker and higher in frequency than the distinctive plasma lower-frequency contribution. The former is in the forward direction while the latter is in a cone and reveals an abrupt down-shift to the plasma frequency. Ring-shaped spatial distributions of the THz radiation are shown to be of universal nature and they occur in both collimated and focusing propagation geometries. Experimental measurements of the frequency-angular spectrum generated by 130-fs laser pulses agree with numerical simulations based on a unidirectional pulse propagation model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...