Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 272(37): 23165-71, 1997 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-9287320

RESUMEN

In the human multidrug transporter (MDR1), three serine residues located in the "linker" region of the protein are targets of in vivo phosphorylation. These three serines, or all eight serines and threonines in the linker, were substituted by alanines (mutants 3A and 8A) or with glutamic acids (mutants 3E and 8E). The wild-type and mutant proteins were expressed in baculovirus-infected Spodoptera frugiperda (Sf9) ovarian insect cells, and the vanadate-sensitive, drug-stimulated ATPase activity was measured in isolated membrane preparations. The maximum drug-stimulated MDR1-ATPase activity was similar for the wild-type and the mutant proteins. However, wild-type MDR1, which is known to be phosphorylated in Sf9 membranes, and the 3E and 8E mutants, which mimic the charge of phosphorylation, achieved half-maximum activation of MDR1-ATPase activity at lower verapamil, vinblastine, or rhodamine 123 concentrations than the nonphosphorylatable 3A and 8A variants. For some other drugs (e.g. valinomycin or calcein acetoxymethylester) activation of the MDR1-ATPase for any of the mutants was indistinguishable from that of the wild-type protein. Kinetic analysis of the data obtained for the 3A and 8A MDR1 variants indicated the presence of more than one drug interaction site, exhibiting an apparent negative cooperativity. This phenomenon was not observed for the wild-type or the 3E and 8E MDR1 proteins. The dependence of the MDR1-ATPase activity on ATP concentration was identical in the wild-type and the mutant proteins, and Hill plots indicated the presence of more than one functional ATP-binding site. These results suggest that phosphorylation of the linker region modulates the interaction of certain drugs with MDR1, especially at low concentrations, although phosphorylation does not alter the maximum level of MDR1-ATPase activity or its dependence on ATP concentration.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Mutación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/farmacología , Animales , Baculoviridae/genética , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos , Activación Enzimática , Humanos , Fosforilación , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Rodaminas/farmacología , Serina/genética , Serina/metabolismo , Spodoptera/citología , Treonina/genética , Treonina/metabolismo , Vanadatos/farmacología , Verapamilo/farmacología , Vinblastina/farmacología
2.
J Biol Chem ; 271(23): 13668-74, 1996 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-8662768

RESUMEN

P-glycoprotein (P-gp) is an active transporter that can confer multidrug resistance by pumping cytotoxic drugs out of cells and tumors. P-gp is phosphorylated at several sites in the "linker" region, which separates the two halves of the molecule. To examine the role of phosphorylation in drug transport, we mutated P-gp such that it could no longer be phosphorylated by protein kinase C (PKC). When expressed in yeast, the ability of the mutant proteins to confer drug resistance, or to mediate [3H]vinblastine accumulation in secretory vesicles, was indistinguishable from that of wild type P-gp. A matched pair of mammalian cell lines were generated expressing wild type P-gp and a non-phosphorylatable mutant protein. Mutation of the phosphorylation sites did not alter P-gp expression or its subcellular localization. The transport properties of the mutant and wild type proteins were indistinguishable. Thus, phosphorylation of the linker of P-gp by PKC does not affect the rate of drug transport. In light of these data, the use of agents that alter PKC activity to reverse multidrug resistance in the clinic should be considered with caution.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteína Quinasa C/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Transporte Biológico Activo , Línea Celular , Clonación Molecular , Secuencia de Consenso , Doxorrubicina/farmacocinética , Resistencia a Medicamentos , Fluoresceínas/farmacocinética , Humanos , Técnicas In Vitro , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos/genética , Fosforilación , Mutación Puntual , Saccharomyces cerevisiae/genética , Transfección , Vinblastina/farmacocinética
3.
EMBO J ; 14(1): 68-75, 1995 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-7828597

RESUMEN

The multidrug resistance P-glycoprotein (P-gp), which transports hydrophobic drugs out of cells, is also associated with volume-activated chloride currents. It is not yet clear whether P-gp is a channel itself, or whether it is a channel regulator. Activation of chloride currents by hypotonicity in cells expressing P-gp was shown to be regulated by protein kinase C (PKC). HeLa cells exhibited volume-activated chloride currents indistinguishable from those obtained in P-gp-expressing cells except that they were insensitive to PKC. HeLa cells did not express detectable P-gp but, following transient transfection with cDNA encoding P-gp, the volume-activated channels acquired PKC regulation. PKC regulation was abolished when serine/threonine residues in the consensus phosphorylation sites of the linker region of P-gp were replaced with alanine. Replacement of these residues with glutamate, in order to mimic the charge of the phosphorylated protein, also mimicked the effects of PKC on channel activation. These data demonstrate that PKC-mediated phosphorylation of P-gp regulates the activity of an endogenous chloride channel and thus indicate that P-gp is a channel regulator.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Canales de Cloruro/metabolismo , Proteína Quinasa C/metabolismo , Células 3T3 , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tamaño de la Célula , Cloruros/metabolismo , Secuencia de Consenso , Resistencia a Múltiples Medicamentos , Células HeLa , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosforilación , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
4.
Jpn J Physiol ; 44 Suppl 2: S9-15, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7752561

RESUMEN

The multidrug resistance P-glycoprotein (Pgp) transports hydrophobic drugs out of cells and has been recently associated with volume-activated chloride channels. Activation of these channels by hypotonic swelling was seen to be prevented by protein kinase C (PKC) in cells expressing high levels of Pgp by transfection. HeLa cells possess equivalent chloride currents yet they are not regulated by PKC. HeLa cells do not express Pgp as assessed by Western blotting. Following transfection of HeLa cells with cDNA encoding for Pgp, PKC-dependent suppression of volume activated chloride currents was observed. PKC regulation in transiently transfected HeLa cells was abolished by alanine replacement of the serine/threonine residues in the consensus phosphorylation sites of the linker region of Pgp. Replacement of these residues with glutamate, to mimic the effect of phosphorylation, mimicked the effects of PKC on channel activation. These results indicate that overexpression of Pgp confers PKC-regulation of endogenous volume-activated chloride channels. More generally they favour a model in which Pgp acts as a regulator of volume-activated chloride channels.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Canales de Cloruro/fisiología , Proteína Quinasa C/farmacología , Resistencia a Múltiples Medicamentos , Células HeLa , Humanos , Técnicas de Placa-Clamp , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...