Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 8(38): 25162-9, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27589410

RESUMEN

Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.


Asunto(s)
Magnetismo , Compuestos Férricos , Oro , Hipertermia Inducida , Campos Magnéticos , Nanopartículas de Magnetita , Nanoestructuras
2.
J Phys Condens Matter ; 27(49): 496002, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26593408

RESUMEN

The structural state and static and dynamic magnetic properties of TbCu2 nanoparticles are reported to be produced by mechanical milling under inert atmosphere. The randomly dispersed nanoparticles as detected by TEM retain the bulk symmetry with an orthorhombic Imma lattice and Tb and Cu in the 4e and 8h positions, respectively. Rietveld refinements confirm that the milling produces a controlled reduction of particle sizes reaching ≃6 nm and an increase of the microstrain up to ≃0.6%. The electrical resistivity indicates a metallic behavior and the presence of a magnetic contribution to the electronic scattering which decreases with milling times. The dc-susceptibility shows a reduction of the Néel transition (from 49 K to 43 K) and a progressive increase of a peak (from 9 K to 15 K) in the zero-field-cooled magnetization with size reduction. The exchange anisotropy is very weak (a bias field of ≃30 Oe) and is due to the presence of a disordered (thin) shell coupled to the antiferromagnetic core. The dynamic susceptibility evidences a critical slowing down in the spin-disordered state for the lowest temperature peak associated with a spin glass-like freezing with a tendency of zv and ß exponents to increase when the size becomes 6 nm (zv ≃ 6.6 and ß ≃ 0.85). A Rietveld analysis of the neutron diffraction patterns 1.8 ≤ T ≤ 60 K, including the magnetic structure determination, reveals that there is a reduction of the expected moment (≃80%), which must be connected to the presence of the disordered particle shell. The core magnetic structure retains the bulk antiferromagnetic arrangement. The overall interpretation is based on a superantiferromagnetic behavior which at low temperatures coexists with a canting of surface moments and a mismatch of the antiferromagnetic sublattices of the nanoparticles. We propose a novel magnetic phase diagram where changes are provoked by a combination of the decrease of size and the increase of microstrain.

3.
Nanotechnology ; 26(30): 305705, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26159463

RESUMEN

NiO nanoparticles (NPs) with a nominal size range of 2-10 nm, synthesized via high-temperature pyrolysis of a nickel nitrate, have been extensively investigated using neutron diffraction and magnetic (ac and dc) measurements. The magnetic behavior of the NPs changes noticeably when their diameter decreases below 4 nm. For NPs larger than or equal to this size, Rietveld analysis of the room temperature neutron diffraction patterns reveals that there is a reduction in the expected magnetic moment per [Formula: see text] ion with respect to bulk NiO, which is linked to the existence of a magnetically disordered shell at the NP surface. The presence of two peaks in the temperature dependence of both the dc magnetization after zero-field-cooling and the real part of the ac magnetic susceptibility is explained in terms of a core (antiferromagnetic, AFM)/shell (spin glass, SG) morphology. The high-temperature peak ([Formula: see text] K) is associated with collective blocking of the uncompensated magnetic moments inside the AFM core. The low-temperature peak ([Formula: see text] K) is a signature of a SG-like freezing of the surface [Formula: see text] spins. In addition, an exchange bias (EB) effect emerges due to the core/shell magnetic coupling. The cooling field and temperature dependences of the EB effect and the coercive field are discussed in terms of the core size and the effective magnetic anisotropy of the NPs. However, NiO NPs of 2 nm in size no longer show AFM order and the [Formula: see text] magnetic moments freeze into a SG-like state below [Formula: see text] K, with no evidence of EB effect.

4.
Nanoscale ; 6(1): 457-65, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24217131

RESUMEN

The possibility of tuning the magnetic behaviour of nanostructured 3d transition metal oxides has opened up the path for extensive research activity in the nanoscale world. In this work we report on how the antiferromagnetism of a bulk material can be broken when reducing its size under a given threshold. We combined X-ray diffraction, high-resolution transmission electron microscopy, extended X-ray absorption fine structure and magnetic measurements in order to describe the influence of the microstructure and morphology on the magnetic behaviour of NiO nanoparticles (NPs) with sizes ranging from 2.5 to 9 nm. The present findings reveal that size effects induce surface spin frustration which competes with the expected antiferromagnetic (AFM) order, typical of bulk NiO, giving rise to a threshold size for the AFM phase to nucleate. Ni(2+) magnetic moments in 2.5 nm NPs seem to be in a spin glass (SG) state, whereas larger NPs are formed by an uncompensated AFM core with a net magnetic moment surrounded by a SG shell. The coupling at the core-shell interface leads to an exchange bias effect manifested at low temperature as horizontal shifts of the hysteresis loop (~1 kOe) and a coercivity enhancement (~0.2 kOe).

5.
J Synchrotron Radiat ; 8(Pt 2): 443-5, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11512808

RESUMEN

We present X-ray Magnetic Circular Dichroism experiments (XMCD) on the Fe K edge of FeZrB metallic glasses performed under tensile stress. In these compounds the application of tensile stresses produces a large increase of the Curie Temperature. The XMCD signal presents the features expected for a weak ferromagnet but a gradual enhancement of the ferromagnetism is observed as boron and zirconium concentrations increase. The main effect of the tensile stress is to increase the density of states at the Fermi level as deduced from the increment of the amplitude of the XMCD signal with the stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...