Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879153

RESUMEN

FLG is a well-known biomarker of atopic dermatitis and skin dryness. Its full proteolysis (or filaggrinolysis) produces the major constituents of the natural moisturizing factor. Some proteases/peptidases remain to be identified in this multistep process. Mining 16 omics analyses, we identified prolyl endopeptidase (PREP) as a candidate peptidase. Indirect immunofluorescence and confocal analysis demonstrated its localization in the granular and deep cornified layers, where it colocalized with FLG. Tandem mass spectroscopy and fluorescent quenching activity assays showed that PREP cleaved several synthetic peptides derived from the FLG sequence, at the carboxyl side of an internal proline. Deimination of these peptides increased PREP enzymatic efficiency. Specific inhibition of PREP in reconstructed human epidermis using benzyloxycarbonyl-pro-prolinal induced the accumulation of FLG monomers. Downregulation of PREP expression in reconstructed human epidermis using RNA interference confirmed the impact of PREP on FLG metabolism and highlighted a more general role of PREP in keratinocyte differentiation. Indeed, quantitative global proteomic, western blotting, and RT-qPCR analyses showed a strong reduction in the expression of bleomycin hydrolase, known to be involved in filaggrinolysis, and of several other actors of cornification such as loricrin. Consequently, at the functional level, the transepidermal electric resistance was drastically reduced.

2.
Int J Pharm ; 658: 124186, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38701908

RESUMEN

Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.


Asunto(s)
Cumarinas , Oxazoles , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Humanos , Cumarinas/química , Oxazoles/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Células HCT116 , Supervivencia Celular/efectos de los fármacos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacología , Nanopartículas/química , Portadores de Fármacos/química , Polímeros/química
3.
J Funct Biomater ; 15(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38391902

RESUMEN

Human platelet lysate (HPL), rich in growth factors, is increasingly recognized for its potential in tissue engineering and regenerative medicine. However, its use in liquid or gel form is constrained by limited stability and handling difficulties. This study aimed to develop dry and porous aerogels from HPL hydrogel using an environmentally friendly supercritical CO2-based shaping process, specifically tailored for tissue engineering applications. The aerogels produced retained their three-dimensional structure and demonstrated significant mechanical robustness and enhanced manageability. Impressively, they exhibited high water absorption capacity, absorbing 87% of their weight in water within 120 min. Furthermore, the growth factors released by these aerogels showed a sustained and favourable biological response in vitro. They maintained the cellular metabolic activity of fibroblasts (BALB-3T3) at levels akin to conventional culture conditions, even after prolonged storage, and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Additionally, the aerogels themselves supported the adhesion and proliferation of murine fibroblasts (BALB-3T3). Beyond serving as excellent matrices for cell culture, these aerogels function as efficient systems for the delivery of growth factors. Their multifunctional capabilities position them as promising candidates for various tissue regeneration strategies. Importantly, the developed aerogels can be stored conveniently and are considered ready to use, enhancing their practicality and applicability in regenerative medicine.

4.
Exp Dermatol ; 33(1): e14772, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36807394

RESUMEN

Absence of a functional proteasome in the suprabasal layers of the epidermis is responsible for keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome. Patient epidermis shows hypergranulosis associated with abnormally shaped keratohyalin granules and abnormal distribution of filaggrin in the Stratum granulosum and Stratum corneum. This suggests that the proteasome is involved in the degradation of filaggrin. To test this hypothesis, the proteasome proteolytic activity was inhibited in 3D reconstructed human epidermis (RHE) with the specific clasto-lactacystin ß-lactone inhibitor. Confirming the efficacy of inhibition, ubiquitinated proteins accumulated in treated RHEs as compared to controls. Levels of urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA), the end products of filaggrin degradation, were reduced. However, neither filaggrin accumulation nor appearance of filaggrin-derived peptides were observed. On the contrary, the amount of filaggrin was shown to decrease, and a similar tendency was observed for profilaggrin, its precursor. Accumulation of small cytoplasmic vesicles associated with a significant increase in autophagy markers indicated activation of the autophagy process upon proteasome inhibition. Taken together, these results suggest that the perturbation of UCA and PCA production after proteasome inhibition was probably due to down-regulation of filaggrin expression rather than to blocking of filaggrin proteolysis.


Asunto(s)
Proteínas Filagrina , Complejo de la Endopetidasa Proteasomal , Humanos , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
Cell Death Discov ; 9(1): 198, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385992

RESUMEN

Deimination is a post-translational modification catalyzed by a family of enzymes named peptidylarginine deiminases (PADs). PADs transform arginine residues of protein substrates into citrulline. Deimination has been associated with numerous physiological and pathological processes. In human skin, three PADs are expressed (PAD1-3). While PAD3 is important for hair shape formation, the role of PAD1 is less clear. To decipher the main role(s) of PAD1 in epidermal differentiation, its expression was down-regulated using lentivirus-mediated shRNA interference in primary keratinocytes and in three-dimensional reconstructed human epidermis (RHE). Compared to normal RHEs, down-regulation of PAD1 caused a drastic reduction in deiminated proteins. Whereas proliferation of keratinocytes was not affected, their differentiation was disturbed at molecular, cellular and functional levels. The number of corneocyte layers was significantly reduced, expression of filaggrin and cornified cell envelope components, such as loricrin and transglutaminases, was down-regulated, epidermal permeability increased and trans-epidermal-electric resistance diminished drastically. Keratohyalin granule density decreased and nucleophagy in the granular layer was disturbed. These results demonstrate that PAD1 is the main regulator of protein deimination in RHE. Its deficiency alters epidermal homeostasis, affecting the differentiation of keratinocytes, especially the cornification process, a special kind of programmed cell death.

6.
Langmuir ; 38(51): 16144-16155, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36516233

RESUMEN

In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.


Asunto(s)
Poliaminas , Polímeros , Sistemas de Liberación de Medicamentos , Micelas
7.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361668

RESUMEN

Atopic dermatitis (AD), the most common inflammatory skin disorder, is a multifactorial disease characterized by a genetic predisposition, epidermal barrier disruption, a strong T helper (Th) type 2 immune reaction to environmental antigens and an altered cutaneous microbiome. Microbial dysbiosis characterized by the prevalence of Staphylococcus aureus (S. aureus) has been shown to exacerbate AD. In recent years, in vitro models of AD have been developed, but none of them reproduce all of the pathophysiological features. To better mimic AD, we developed reconstructed human epidermis (RHE) exposed to a Th2 pro-inflammatory cytokine cocktail and S. aureus. This model well reproduced some of the vicious loops involved in AD, with alterations at the physical, microbial and immune levels. Our results strongly suggest that S. aureus acquired a higher virulence potential when the epidermis was challenged with inflammatory cytokines, thus later contributing to the chronic inflammatory status. Furthermore, a topical application of a Castanea sativa extract was shown to prevent the apparition of the AD-like phenotype. It increased filaggrin, claudin-1 and loricrin expressions and controlled S. aureus by impairing its biofilm formation, enzymatic activities and inflammatory potential.


Asunto(s)
Dermatitis Atópica , Infecciones Estafilocócicas , Humanos , Dermatitis Atópica/metabolismo , Staphylococcus aureus/metabolismo , Epidermis/metabolismo , Piel/metabolismo , Citocinas/metabolismo , Infecciones Estafilocócicas/metabolismo , Cuidados de la Piel
8.
J Invest Dermatol ; 142(10): 2623-2634.e12, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35341734

RESUMEN

Previous work has shown increased expression of genes related to oxidative stress in nonlesional atopic dermatitis (ADNL) skin. Although mitochondria are key regulators of ROS production, their function in AD has never been investigated. Energy metabolism and the oxidative stress response were studied in keratinocytes (KCs) from patients with ADNL or healthy controls. Moreover, ADNL human epidermal equivalents were treated with tigecycline or MitoQ. We found that pyruvate and glucose were used as energy substrates by ADNL KCs. Increased mitochondrial oxidation of (very) long-chain fatty acids, associated with enhanced complexes I and II activities, was observed in ADNL KCs. Metabolomic analysis revealed increased tricarboxylic acid cycle turnover. Increased aerobic metabolism generated oxidative stress in ADNL KCs. ADNL human epidermal equivalents displayed increased mitochondrial function and an enhanced oxidative stress response compared with controls. Treatment of ADNL human epidermal equivalents with tigecycline or MitoQ largely corrected the AD profile, including high p-65 NF-κB, abnormal lamellar bodies, and cellular damage. Furthermore, we found that glycolysis supports but does not supersede mitochondrial metabolism in ADNL KCs. Thus, aerobic metabolism predominates in ADNL but leads to oxidative stress. Therefore, mitochondria could be a reservoir of potential therapeutic targets in atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Dermatitis Atópica/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Ácido Pirúvico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tigeciclina/metabolismo
9.
Vet Dermatol ; 32(6): 620-e165, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34519123

RESUMEN

BACKGROUND: The pathogenesis of human atopic dermatitis (AD) is complex. Like humans, dogs develop spontaneous AD so this species could be a useful model of study. However, AD has been less characterised in dogs than in humans. OBJECTIVES: To compare the epidermis of normal and spontaneously atopic dogs at the functional and structural levels. ANIMALS: Six healthy and five atopic laboratory Beagle dogs. METHODS AND MATERIALS: Dogs were clinically characterised by general examination, Canine Atopic Dermatitis Extent and Severity Index, 4th iteration (CADESI-04) evaluation and trans-epidermal water loss (TWEL) measurement. Skin biopsies were taken from healthy skin from normal dogs and on nonlesional and lesional skin from atopic dogs. Samples were analysed using transmission electron microscopy (TEM). Cornified envelopes were extracted and examined for their visual aspects (smooth versus ruffled). RESULTS: CADESI-04 and TWEL were significantly higher in atopic dogs. Healthy and nonlesional skin could be distinguished from lesional skin by histopathological evaluation. TEM examination revealed abnormal morphology of the stratum corneum (SC) in atopic skin. The SC compactum corneocyte layer was larger. Thicker and wrinkled corneocytes were more prominent (P = 0.005) in the lesional skin. Similar changes were observed in the nonlesional skin, but less pronounced. The proportion of immature ruffled envelopes was increased in atopic samples (P < 0.05), both from lesional and nonlesional areas. CONCLUSIONS: The morphology of the SC was altered in the lesional and apparently nonlesional skin of spontaneously atopic dogs.


Asunto(s)
Dermatitis Atópica , Enfermedades de los Perros , Animales , Dermatitis Atópica/veterinaria , Perros , Células Epidérmicas , Epidermis , Microscopía Electrónica de Transmisión/veterinaria , Piel
10.
J Pathol ; 254(5): 575-588, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33987838

RESUMEN

Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Líquido Amniótico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Anomalías Urogenitales/metabolismo , Reflujo Vesicoureteral/metabolismo , Animales , Femenino , Feto , Humanos , Masculino , Ratones , Proteoma , Proteómica , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA