Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38995143

RESUMEN

BACKGROUND: Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS: Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION: The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Asunto(s)
Genoma , Masculino , Animales , Femenino , Perciformes/genética , Procesos de Determinación del Sexo/genética , Cromosomas Sexuales/genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Sintenía , Genómica/métodos
2.
Microbiology (Reading) ; 167(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34846286

RESUMEN

Bdellovibrio and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster P. ornatus warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a Halobacteriovorax sp. strain Hbv preyed upon the model prey bacterium Vibrio sp. strain Vib. The haemolymph microbiome of juvenile P. ornatus was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus Vibrio in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.


Asunto(s)
Bdellovibrio , Microbiota , Palinuridae , Animales , Bacterias , Hemolinfa , Palinuridae/microbiología
3.
Front Microbiol ; 11: 573588, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162955

RESUMEN

Shell (cuticular) disease manifests in various forms and affects many crustaceans, including lobsters. Outbreaks of white leg disease (WLD) with distinct signs of pereiopod tissue whitening and death have been observed in cultured larvae (phyllosomas) of ornate spiny lobster Panulirus ornatus, eastern rock lobster Sagmariasus verreauxi, and slipper lobster Thenus australiensis. This study aimed to characterise and identify the causative agent of WLD through morphological and molecular (16S rRNA gene and whole genome sequencing) analysis, experimental infection of damaged/undamaged P. ornatus and T. australiensis phyllosomas, and bacterial community analysis (16S rRNA gene amplicon sequencing) of P. ornatus phyllosomas presenting with WLD during an outbreak. Bacterial communities of WLD-affected pereiopods showed low bacterial diversity and dominant abundance of Aquimarina spp. compared to healthy pereiopods, which were more diverse and enriched with Sulfitobacter spp. 16S rRNA gene Sanger sequencing of cultures from disease outbreaks identified the dominant bacterial isolate (TRL1) as a Gram-negative, long non-flagellated rod with 100% sequence identity to Aquimarina hainanensis. Aquimarina sp. TRL1 was demonstrated through comparative genome analysis (99.99% OrthoANIu) as the bacterium reisolated from experimentally infected phyllosomas presenting with typical signs of WLD. Pereiopod damage was a major predisposing factor to WLD. Histopathological examination of WLD-affected pereiopods showed masses of internalised bacteria and loss of structural integrity, suggesting that Aquimarina sp. TRL1 could enter the circulatory system and cause death by septicaemia. Aquimarina sp. TRL1 appears to have important genomic traits (e.g., tissue-degrading enzymes, gliding motility, and aggregate-promoting factors) implicated in the pathogenicity of this bacterium. We have shown that Aquimarina sp. TRL1 is the aetiological agent of WLD in cultured Palinurid and Scyllarid phyllosomas and that damaged pereiopods are a predisposing factor to WLD.

4.
Sci Rep ; 9(1): 1677, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737466

RESUMEN

Lobsters have an open circulatory system with haemolymph that contains microorganisms even in the healthy individuals. Understanding the role of these microorganisms becomes increasingly important particularly for the diagnosis of disease as the closed life-cycle aquaculture of the spiny lobster Panulirus ornatus nears commercial reality. This study aimed to characterise haemolymph responses of healthy cultured P. ornatus juveniles at control (28 °C) and elevated (34 °C) temperatures. This was assessed by measuring immune parameters (total granulocyte counts, total haemocyte counts, clotting times), and culture-independent (pyrosequencing of haemolymph DNA) and culture-dependent (isolation using nonselective growth medium) techniques to analyse bacterial communities from lobster haemolymph sampled on days 0, 4 and 6 post-exposure to the temperature regimes. Elevated temperature (34 °C) affected lobster survival, total granulocyte counts, and diversity, load and functional potential of the haemolymph bacterial community. Pyrosequencing analyses showed that the core haemolymph microbiome consisted of phyla Proteobacteria and Bacteriodetes. Overall, culture-independent methods captured a higher bacterial diversity and load when compared to culture-dependent methods, however members of the Rhodobacteraceae were strongly represented in both analyses. This is the first comprehensive study providing comparisons of haemolymph bacterial communities from healthy and thermally stressed cultured juvenile P. ornatus and has the potential to be used in health monitoring programs.


Asunto(s)
Acuicultura/métodos , Bacterias/clasificación , Palinuridae/crecimiento & desarrollo , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Hemolinfa/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Palinuridae/microbiología , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Temperatura
5.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29145612

RESUMEN

With recent technologies making it possible for commercial scale closed life-cycle aquaculture production of spiny lobster (Panulirus ornatus) comes a strong impetus to further understand aspects of lobster health. The gut microbiome plays a crucial role in host health, affecting growth, digestion, immune responses and pathogen resistance. Herein we characterise and compare gut microbiomes across different developmental stages (6-7 days post-emergence [dpe], 52 dpe and 13 months post-emergence [mpe]) and gut regions (foregut, midgut and hindgut) of cultured P. ornatus juveniles. Gut samples were analysed using 16S rRNA next-generation sequencing. Core gut microbiomes of P. ornatus comprised the phyla Tenericutes and Proteobacteria. Within class Gammaproteobacteria, families Pseudoalteromonadaceae and Vibrionaceae were dominant members across the majority of the gut microbiomes. Characterisation of bacterial communities from 13 mpe lobsters indicated that the hindgut microbiome was more diverse and compositionally dissimilar to the foregut and midgut. The bacterial composition of the hindgut was more similar among younger juveniles (6-7 dpe and 52 dpe) compared to 13 mpe lobsters. This is the first study to explore gut microbiomes of spiny lobster juveniles. We demonstrate that the composition of the gut microbiome was shaped by gut region, whereas the structure of the hindgut microbiome was influenced by developmental stage.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Palinuridae/crecimiento & desarrollo , Palinuridae/microbiología , Adolescente , Animales , Acuicultura , Bacterias/clasificación , Bacterias/genética , Digestión , Tracto Gastrointestinal/microbiología , Humanos , ARN Ribosómico 16S/genética
6.
Environ Microbiol Rep ; 5(1): 39-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23757129

RESUMEN

The development of efficient probiotic application protocols for use in marine larviculture relies on comprehensive understanding of pathogen-probiont-host interactions. The probiont combination of Pseudoalteromonas sp. PP107 and Vibrio sp. PP05 provides additive protection against vectored Vibrio owensii DY05 infection in larvae (phyllosomas) of ornate spiny lobster, Panulirus ornatus. Here, fluorescently tagged strains were used to demonstrate niche specialization of these probionts in both the live feed vector organism Artemia and in phyllosomas. The pathogen was vulnerable to direct interaction with PP05 in the bacterioplankton as well as in the Artemia gut and the phyllosoma foregut and midgut gland. In contrast, PP107 was localized on external surfaces of Artemia and phyllosomas, and direct interaction with the pathogen was limited to the bacterioplankton. While PP107 was the overall dominant ectobiont on the phyllosoma cephalothorax and inner leg segments, PP05 was the primary colonizer of outer leg segments, nutrient-rich locales that may promote ingestion during feeding. This study shows that niche specialization can contribute to the additive probiotic effect of a probiotic mixture and highlights that probiotic enrichment of Artemia cultures can intercept the infection cycle of V. owensii DY05 in early-stage P. ornatus phyllosomas.


Asunto(s)
Palinuridae/microbiología , Probióticos/administración & dosificación , Vibrio/aislamiento & purificación , Vibrio/patogenicidad , Animales , Antibiosis , Artemia , Carga Bacteriana , Tracto Gastrointestinal , Larva/microbiología , Pseudoalteromonas/crecimiento & desarrollo , Pseudoalteromonas/aislamiento & purificación , Vibrio/crecimiento & desarrollo , Virulencia
7.
PLoS One ; 7(7): e39667, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792184

RESUMEN

Vibrio owensii DY05 is a serious pathogen causing epizootics in the larviculture of ornate spiny lobster Panulirus ornatus. In the present study a multi-tiered probiotic screening strategy was used to identify a probiotic combination capable of protecting P. ornatus larvae (phyllosomas) from experimental V. owensii DY05 infection. From a pool of more than 500 marine bacterial isolates, 91 showed definitive in vitro antagonistic activity towards the pathogen. Antagonistic candidates were shortlisted based on phylogeny, strength of antagonistic activity, and isolate origin. Miniaturized assays used a green fluorescent protein labelled transconjugant of V. owensii DY05 to assess pathogen growth and biofilm formation in the presence of shortlisted candidates. This approach enabled rapid processing and selection of candidates to be tested in a phyllosoma infection model. When used in combination, strains Vibrio sp. PP05 and Pseudoalteromonas sp. PP107 significantly and reproducibly protected P. ornatus phyllosomas during vectored challenge with V. owensii DY05, with survival not differing significantly from unchallenged controls. The present study has shown the value of multispecies probiotic treatment and demonstrated that natural microbial communities associated with wild phyllosomas and zooplankton prey support antagonistic bacteria capable of in vivo suppression of a pathogen causing epizootics in phyllosoma culture systems.


Asunto(s)
Palinuridae/microbiología , Probióticos , Vibrio/fisiología , Animales , Biopelículas , Larva/inmunología , Larva/microbiología , Palinuridae/inmunología , Filogenia , Vibrio/genética , Vibrio/aislamiento & purificación
8.
Appl Environ Microbiol ; 78(8): 2841-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22307306

RESUMEN

The type strain of Vibrio owensii (DY05) was isolated during an epizootic of aquaculture-reared larvae (phyllosomas) of the ornate spiny lobster (Panulirus ornatus). V. owensii DY05 was formally demonstrated to be the etiological agent of a disease causing rapid and reproducible larval mortality with pathologies similar to those seen during disease epizootics. Vectored challenge via the aquaculture live feed organism Artemia (brine shrimp) caused consistent cumulative mortality rates of 84 to 89% after 72 h, in contrast to variable mortality rates seen after immersion challenge. Histopathological examination of vector-challenged phyllosomas revealed bacterial proliferation in the midgut gland (hepatopancreas) concomitant with epithelial cell necrosis. A fluorescent-protein-labeled V. owensii DY05 transconjugant showed dispersal of single cells in the foregut and hepatopancreas 6 h postexposure, leading to colonization of the entire hepatopancreas within 18 h and eventually systemic infection. V. owensii DY05 is a marine enteropathogen highly virulent to P. ornatus phyllosoma that uses vector-mediated transmission and release from host association to a planktonic existence to perpetuate transfer. This understanding of the infection process will improve targeted biocontrol strategies and enhance the prospects of commercially viable larviculture for this valuable spiny lobster species.


Asunto(s)
Palinuridae/microbiología , Vibrio/patogenicidad , Animales , Acuicultura , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Histocitoquímica , Microscopía , Modelos Biológicos , Análisis de Supervivencia
9.
FEMS Microbiol Lett ; 302(2): 175-81, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20002183

RESUMEN

Two bacterial strains (DY05(T) and 47666-1) were isolated in Queensland, Australia, from diseased cultured crustaceans Panulirus ornatus and Penaeus monodon, respectively. On the basis of 16S rRNA gene sequence identity, the strains were shown to belong to the Harveyi clade of the genus Vibrio. Multilocus sequence analysis using five housekeeping genes (rpoA, pyrH, topA, ftsZ and mreB) showed that the strains form a monophyletic group with 94.4% concatenated sequence identity to the closest species. DNA-DNA hybridization experiments showed that strains DY05(T) and 47666-1 had 76% DNA similarity to each other, but <70% to their closest neighbours Vibrio harveyi LMG 4044(T) (< or =55%), Vibrio campbellii LMG 11216(T) (< or =52%) and Vibrio rotiferianus LMG 21460(T) (< or =46%). Strains DY05(T) and 47666-1 could be differentiated from their relatives on the basis of several phenotypic characteristics. The major fatty acids were C(15:0) iso 2-OH and/or C(16:1)omega7, C(16:0), C(18:1)omega7 and C(14:0). Based on the polyphasic evidence presented here, it can be concluded that strains DY05(T) and 47666-1 belong to the same novel species of the genus Vibrio, for which the name Vibrio owensii sp. nov. is proposed. The type strain is DY05(T) (=JCM 16517(T)=ACM 5300(T)).


Asunto(s)
Palinuridae/microbiología , Penaeidae/microbiología , Vibrio/clasificación , Vibrio/aislamiento & purificación , Animales , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Queensland , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vibrio/química , Vibrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA