Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 61(24): 8553-8576, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27845939

RESUMEN

In clinical studies, high resolution peripheral quantitative computed tomography (HR-pQCT) is used to separately evaluate cortical bone and trabecular bone with an isotropic voxel of 82 µm3, and typical cortical parameters are cortical density (D.comp), thickness (Ct.Th), and porosity (Ct.Po). In vitro, micro-computed tomography (micro-CT) is used to explore the internal cortical bone micro-structure with isotropic voxels and high resolution synchrotron radiation (SR); micro-CT is considered the 'gold standard'. In 16 tibias and 8 femurs, HR-pQCT measurements were compared to conventional micro-CT measurements. To test modality effects, conventional micro-CT measurements were compared to SR micro-CT measurements at 7.5 µm3; SR micro-CT measurements were also tested at different voxel sizes for the femurs, specifically, 7.5 µm3 versus 2.8 µm3. D.comp (r = -0.88, p < 10-3) was the parameter best correlated with porosity (Po.V/TV). The correlation was not affected by the removal of pores under 130 µm. Ct.Th was also significantly highly correlated (r = -0.89 p < 10-3), while Ct.Po was correlated with its counterpart Po.V/TV (r = 0.74, p < 10-3). From SR micro-CT and conventional micro-CT at 7.5 µm3 in matching areas, Po.V/TV and pore diameter were underestimated in conventional micro-CT with mean ± standard deviation (SD) biases of -2.5 ± 1.9% and -0.08 ± 0.08 mm, respectively. In contrast, pore number (Po.N) and pore separation (Po.Sp) were overestimated with mean ± SD biases of +0.03 ± 0.04 mm-1 and +0.02 ± 0.04 mm, respectively. The results from the tibia and femur were similar when the results of SR micro-CT at 7.5 µm3 and 2.8 µm3 were compared. Po.V/TV, specific surface of pores (Po.S/Po.V), and Po.N were underestimated with mean biases of -1.7 ± 0.9%, -4.6 ± 4.4 mm-1, and -0.26 ± 0.15 mm-1, respectively. In contrast, pore spacing was overestimated at 7.5 µm3 compared to 2.8 µm3 with mean biases of 0.05 ± 0.03 mm. Cortical bone measurements from HR-pQCT images provided consistent results compared to those obtained using conventional micro-CT at the distal tibia. D.comp was highly correlated to Po.V/TV because it considers both the micro-porosity (Haversian systems) and macro-porosity (resorption lacunae) of cortical bone. The complexity of canal organization, (including shape, connectivity, and surface) are not fully considered in conventional micro-CT in relation to beam hardening and cone beam reconstruction artifacts. With the exception of Po.V/TV measurements, morphological and topological measurements depend on the characteristics of the x-ray beam, and to a lesser extent, on image resolution.


Asunto(s)
Densidad Ósea , Hueso Cortical/diagnóstico por imagen , Fémur/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Sincrotrones/instrumentación , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Imagen Multimodal/métodos
2.
Osteoporos Int ; 24(3): 1023-33, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22814943

RESUMEN

UNLABELLED: Diaphysis, inferior, and lateral superior regions of the femoral neck are subjected to diverse mechanical loads. Using micro-CT based on synchrotron radiation, three-dimensional morphology and connectivity of the pore network are location dependent, underlying different remodeling mechanisms. INTRODUCTION: The three-dimensional (3D) morphology and connectivity of the pore network at various locations in human femurs subjected to diverse mechanical loads were assessed using micro-CT based on synchrotron radiation. METHODS: The cortex from 20 human femurs (mean age, 78.3 ± 12.4 years) was taken from the diaphysis (D), the inferior (IN), and the lateral superior (LS) regions of the femoral neck. The voxel size of the 3D reconstructed image was 7.5 µm. Cortical thickness and pore volume/tissue volume (Po.V/TV), pore diameter (Po.Dm) and spacing (Po.Sp) were determined. The pore surface/pore volume ratio (Po.S/Po.V), the number of pores (Po.N), the degrees of anisotropy (DA), and the connectivity density (ConnD), the degree of mineralization (DMB) were also determined. RESULTS: The characteristics of the pore network in femoral cortical bone were found to be location dependent. There was greater porosity, Po.Dm, and Po.N, and more large (180-270 µm), extra-large (270-360 µm) and giant pores (>360 µm) in the LS compared to the IN and D. The difference in porosity in between the periosteal and endosteal layers was mostly due to an increase of Po.Dm rather than Po.N. There was a lower DMB of bone in the LS, which is consistent with a higher remodeling rate. CONCLUSION: The results provide evidence for large variations in the structure of the internal pore network in cortical bone. These variations could involve different underlying remodeling mechanisms.


Asunto(s)
Fémur/anatomía & histología , Anciano , Anciano de 80 o más Años , Anisotropía , Diáfisis/anatomía & histología , Diáfisis/diagnóstico por imagen , Diáfisis/fisiología , Femenino , Fémur/diagnóstico por imagen , Fémur/fisiología , Cuello Femoral/anatomía & histología , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/fisiología , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Porosidad , Sincrotrones , Soporte de Peso/fisiología , Microtomografía por Rayos X
3.
Bone ; 51(3): 362-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22728912

RESUMEN

High-resolution peripheral quantitative computed tomography (HR-pQCT) is an in-vivo technique used to analyze the distal radius and tibia. It provides a voxel size of 82µm. In addition to providing the usual microarchitecture parameters, local topological analysis (LTA) depicting rod- and plate-like trabeculae may improve prediction of bone fragility. Thirty-three women with prevalent wrist fractures from the OFELY cohort were compared with age-matched controls. Bone microarchitecture, including the structural model index (SMI), was assessed by HR-pQCT, and micro-finite element analysis (µFE) was computed on trabecular bone images of the distal radius (XtremeCT, Scanco Medical AG). A new LTA method was applied to label each bone voxel as a rod, plate or node. Then the bone volume fraction (BV/TV*), the rod, plate and node ratios over bone volume (RV/BV*, PV/BV*, NV/BV*) or total volume (RV/TV*, PV/TV*, NV/TV*) and the rod to plate ratio (RV/PV*) were calculated. Associations between LTA parameters and wrist fractures were computed in a conditional logistic regression model. Multivariate models were tested to predict the µFE-derived trabecular bone stiffness. RV/TV* (OR=4.41 [1.05-18.62]) and BV/TV* (OR=6.45 [1.06-39.3]), were significantly associated with prevalent wrist fracture, after adjustment for ultra distal radius aBMD. Multivariate linear models including PV/TV* or BV/TV*+RV/PV* predicted trabecular stiffness with the same magnitude as those including SMI. Conversion from plates into rods was significantly associated with bone fragility, with a negative correlation between RV/PV* and trabecular bone stiffness (r=-0.63, p<0.0001). We conclude that our local topological analysis is feasible for a voxel size of 82µm. After further validation, it may improve bone fragility description.


Asunto(s)
Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/patología , Radio (Anatomía)/diagnóstico por imagen , Radio (Anatomía)/patología , Tomografía Computarizada por Rayos X/métodos , Anciano , Fenómenos Biomecánicos , Estudios de Cohortes , Femenino , Humanos , Modelos Lineales , Análisis Multivariante , Radio (Anatomía)/fisiopatología , Fracturas del Radio/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...