Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(7): 1334-1345, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37307287

RESUMEN

Six new ether phospholipid analogues encompassing constituents from cashew nut shell liquid as the lipid portion were synthesized in an effort to valorize byproducts of the cashew industry toward the generation of potent compounds against Chagas disease. Anacardic acids, cardanols, and cardols were used as the lipid portions and choline as the polar headgroup. The compounds were evaluated for their in vitro antiparasitic activity against different developmental stages of Trypanosoma cruzi. Compounds 16 and 17 were found to be the most potent against T. cruzi epimastigotes, trypomastigotes, and intracellular amastigotes exhibiting selectivity indices against the latter 32-fold and 7-fold higher than current drug benznidazole, respectively. Hence, four out of six analogues can be considered as hit-compounds toward the sustainable development of new treatments for Chagas disease, based on inexpensive agro-waste material.


Asunto(s)
Anacardium , Enfermedad de Chagas , Tripanocidas , Desarrollo Sostenible , Nueces , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Lípidos
2.
Exp Parasitol ; 250: 108549, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196704

RESUMEN

Trichomonas vaginalis is a protozoan that causes human trichomoniasis, a sexually transmitted infection (STI) that affects approximately 278 million people worldwide. The current treatment for human trichomoniasis is based on 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole, known as Metronidazole (MTZ). Although effective in eliminating parasitic infection, MTZ is related to serious adverse effects and is not recommended during pregnancy. In addition, some strains are resistant to 5'-nitroimidazoles, prompting the development of alternative drugs for trichomoniasis. Here we show that SQ109 [N-adamantan-2-yl-N'-((E)-3,7-dimethyl-octa- 2,6-dienyl)-ethane-1,2-diamine], a drug under development (antitubercular drug candidate that completed Phase IIb/III) for the treatment of tuberculosis, and previously tested in Trypanosoma cruzi and Leishmania. SQ109 inhibited T.vaginalis growth with an IC50 of 3.15 µM. We used scanning and transmission electron microscopy to visualize the ultrastructural alterations induced by SQ109. The microscopy analysis showed morphological changes on the protozoan surface, where the cells became rounded with increasing surface projections. In addition, the hydrogenosomes increased their size and area occupied in the cell. Furthermore, the volume and a significant association of glycogen particles with the organelle were seen to be altered. A bioinformatics search was done about the compound to find its possible targets and mechanisms of action. Our observations identify SQ109 as a promising compound against T. vaginalis in vitro, suggesting its potential utility as an alternative chemotherapy for trichomoniasis.


Asunto(s)
Antiprotozoarios , Tricomoniasis , Vaginitis por Trichomonas , Trichomonas vaginalis , Femenino , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Vaginitis por Trichomonas/tratamiento farmacológico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Tricomoniasis/tratamiento farmacológico
3.
Artículo en Inglés | MEDLINE | ID: mdl-32152072

RESUMEN

The new complexes Zn(ITZ)2Cl2 (1) and Zn(ITZ)2(OH)2 (2) were synthetized by a reaction of itraconazole with their respective zinc salts under reflux. These Zn-ITZ complexes were characterized by elemental analyses, molar conductivity, mass spectrometry, 1H and 13C{1H} nuclear magnetic resonance, and UV-vis and infrared spectroscopies. The antiparasitic and antifungal activity of Zn-ITZ complexes was evaluated against three protozoans of medical importance, namely, Leishmania amazonensis, Trypanosoma cruzi, and Toxoplasma gondii, and two fungi, namely, Sporothrix brasiliensis and Sporothrix schenckii The Zn-ITZ complexes exhibited a broad spectrum of action, with antiparasitic and antifungal activity in low concentrations. The strategy of combining zinc with ITZ was efficient to enhance ITZ activity since Zn-ITZ-complexes were more active than the azole alone. This study opens perspectives for future applications of these Zn-ITZ complexes in the treatment of parasitic diseases and sporotrichosis.


Asunto(s)
Antifúngicos/farmacología , Antiparasitarios/farmacología , Itraconazol/farmacología , Zinc/farmacología , Leishmania/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pruebas de Sensibilidad Parasitaria , Sporothrix/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA