Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1235: 21-30, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18602907

RESUMEN

The brain generates extensive spontaneous network activity patterns, even in the absence of extrinsic afferents. While the cognitive correlates of these complex activities are being unraveled, the rules that govern the generation, synchronization and spread of different patterns of intrinsic network activity in the brain are still enigmatic. Using hippocampal neurons grown in dissociated cultures, we are able to study these rules. Network activity emerges at 3-7 days in-vitro (DIV) independent of either ongoing excitatory or inhibitory synaptic activity. Network activity matures over the following several weeks in culture, when it becomes sensitive to chronic drug treatment. The size of the network determines its properties, such that dense networks have higher rates of less synchronized activity than that of sparse networks, which are more synchronized but rhythm at lower rates. Large networks cannot be triggered to fire by activating a single neuron. Small networks, on the other hand, do not burst spontaneously, but can be made to discharge a network burst by stimulating a single neuron. Thus, the strength of connectivity is inversely correlated with spontaneous activity and synchronicity. In the absence of confirmed 'leader' neurons, synchronous bursting network activity appears to be triggered by at least several local subthreshold synaptic events. We conclude that networks of neurons in culture can produce spontaneous synchronized activity and serve as a viable model system for the analysis of the rules that govern network activity in the brain.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Hipocampo/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Neuronas/fisiología , Animales , Animales Recién Nacidos , Sincronización Cortical , Redes Neurales de la Computación , Vías Nerviosas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Ratas , Transmisión Sináptica/fisiología
2.
Dev Neurobiol ; 68(7): 870-6, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18327766

RESUMEN

Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/citología , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Plasticidad Neuronal/fisiología , Neuronas/citología , Animales , Animales Recién Nacidos , Células Cultivadas , Neuronas/fisiología , Ratas , Factores de Tiempo
3.
Antioxid Redox Signal ; 9(2): 181-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17115939

RESUMEN

The recent finding that hippocampal slices from aged mice overexpressing the gene for superoxide dismutase (SOD) exhibit long-term potentiation (LTP) of reactivity to afferent stimulation that is significantly larger than that produced in aged wild-type (wt) mice has encouraged the exploration of the effects of reactive oxygen species (ROS) on learning in aged mice. In addition, young-adult and aged wt and SOD transgenic mice were used in an attempt to correlate adult neurogenesis with spatial learning. Aged wt and SOD mice exhibited a 90% reduction in doublecortin-labeled new dentate gyrus neurons as compared to young mice, with no significant difference between genotypes. In addition, aged SOD mice exhibited better performance than wt controls in both reference and working memory tasks in a water maze. These findings provide a behavioral measure to demonstrate that excessive production of H2O2 is beneficial in aged mice.


Asunto(s)
Envejecimiento , Hipocampo/metabolismo , Neuronas/patología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Animales , Conducta Animal , Hipocampo/patología , Humanos , Peróxido de Hidrógeno/farmacología , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neuronas/metabolismo , Conducta Espacial
4.
Eur J Neurosci ; 17(12): 2573-85, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12823464

RESUMEN

The role of afferent innervation in the formation of dendritic spines was studied in cultured rat striatum. The striatum is a unique structure in that it contains highly spiny GABAergic projection neurons, with no known local excitation. Grown alone in culture, striatal neurons did not express spontaneous network activity and were virtually devoid of dendritic spines. Adding GFP-expressing mouse cortical neurons to the striatal culture caused the appearance of spontaneous and evoked excitatory synaptic currents in the striatal neurons and a 10-fold increase in the density of spines on their dendrites. This effect was blocked by a continuous presence of TTX in the growth medium, while removal of the drug caused a rapid appearance of spines. Exposure to glutamate, or the presence of cortex-conditioned medium did not mimic the effect of cortical neurons on formation of spines in the striatal neurons. Also, the cortical innervation did not cause a selective enhancement of survival of specific subtypes of spiny striatal neurons. These experiments demonstrate that excitatory afferents are necessary for the formation of dendritic spines in striatal neurons.


Asunto(s)
Vías Aferentes/fisiología , Cuerpo Estriado/citología , Neuronas/fisiología , Aminoácidos/metabolismo , Anestésicos Locales/farmacología , Animales , Bicuculina/farmacología , Recuento de Células , Tamaño de la Célula , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Técnicas de Cocultivo/métodos , Cuerpo Estriado/efectos de los fármacos , Diagnóstico por Imagen , Estimulación Eléctrica , Electrofisiología , Embrión de Mamíferos , Encefalina Metionina/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Inmunohistoquímica/métodos , Inmunohistoquímica/estadística & datos numéricos , Proteínas Luminiscentes/metabolismo , Ratones , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Embarazo , Quinoxalinas/farmacología , Ratas , Sustancia P/metabolismo , Tetrodotoxina/farmacología , Factores de Tiempo , Transfección
5.
Brain Res ; 972(1-2): 9-15, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12711073

RESUMEN

Dendritic morphology of 2-week-old cultured neurons, taken from postnatal day 1 fragile X mental retardation gene1 knock out (FMR1-/-) mice hippocampus, were compared with cells taken from wild type mice. Under control conditions the FMR1-/- neurons displayed significantly lower spine densities compared to wild type neurons. Pharmacological stimulation of electrical activity, induced by bicuculline, caused a reduction in dendritic spine density in both the FMR1-/- and the wild type cells. In both groups, bicuculline induced a significant shrinkage of spines that were occupied by one or more synaptophysin-immunoreactive presynaptic terminals. The concentration of FMR1 in the wild type cultures was not affected by bicuculline treatment. These experiments indicate that FMR1 is not likely to be an essential factor in activity-modulated morphological plasticity of dendritic spines in cultured hippocampal neurons.


Asunto(s)
Dendritas/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Proteínas de Unión al ARN , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Western Blotting/métodos , Carbocianinas/metabolismo , Técnicas de Cultivo , Colorantes Fluorescentes/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Antagonistas del GABA/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos , Ratones Noqueados , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...