Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Mol Oncol ; 18(3): 662-676, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38264964

RESUMEN

PTPRF interacting protein alpha 1 (PPFIA1) encodes for liprin-α1, a member of the leukocyte common antigen-related protein tyrosine phosphatase (LAR-RPTPs)-interacting protein family. Liprin-α1 localizes to adhesive and invasive structures in the periphery of cancer cells, where it modulates migration and invasion in head and neck squamous cell carcinoma (HNSCC) and breast cancer. To study the possible role of liprin-α1 in anticancer drug responses, we screened a library of oncology compounds in cell lines with high endogenous PPFIA1 expression. The compounds with the highest differential responses between high PPFIA1-expressing and silenced cells across cell lines were inhibitors targeting mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) signaling. KRAS proto-oncogene, GTPase (KRAS)-mutated MDA-MB-231 cells were more resistant to trametinib upon PPFIA1 knockdown compared with control cells. In contrast, liprin-α1-depleted HNSCC cells with low RAS activity showed a context-dependent response to MEK/ERK inhibitors. Importantly, we showed that liprin-α1 depletion leads to increased p-ERK1/2 levels in all our studied cell lines independent of KRAS mutational status, suggesting a role of liprin-α1 in the regulation of MAPK oncogenic signaling. Furthermore, liprin-α1 depletion led to more pronounced redistribution of RAS proteins to the cell membrane. Our data suggest that liprin-α1 is an important contributor to oncogenic RAS/MAPK signaling, and the status of liprin-α1 may assist in predicting drug responses in cancer cells in a context-dependent manner.


Asunto(s)
Neoplasias de Cabeza y Cuello , Sistema de Señalización de MAP Quinasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
2.
Commun Biol ; 6(1): 538, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202533

RESUMEN

During cancer development, tumor cells acquire changes that enable them to invade surrounding tissues and seed metastasis at distant sites. These changes contribute to the aggressiveness of metastatic cancer and interfere with success of therapy. Our comprehensive analysis of "matched" pairs of HNSCC lines derived from primary tumors and corresponding metastatic sites identified several components of Notch3 signaling that are differentially expressed and/or altered in metastatic lines and confer a dependency on this pathway. These components were also shown to be differentially expressed between early and late stages of tumors in a TMA constructed from over 200 HNSCC patients. Finally, we show that suppression of Notch3 improves survival in mice in both subcutaneous and orthotopic models of metastatic HNSCC. Novel treatments targeting components of this pathway may prove effective in targeting metastatic HNSCC cells alone or in combination with conventional therapies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Animales , Ratones , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos
4.
BMC Cancer ; 22(1): 779, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35841085

RESUMEN

BACKGROUND: Hypopharyngeal cancer is a relatively rare malignancy with poor prognosis. Current chemotherapeutic algorithm is still far from personalized medicine, and the identification of the truly active therapeutic biomarkers and/or targets is eagerly awaited. METHODS: Venturing to focus on the conventional key chemotherapeutic drugs, we identified the most correlative genes (and/or proteins) with cellular sensitivity to docetaxel (TXT), cisplatin (CDDP) and 5-fluorouracil (5-FU) in the expression levels, through 3 steps approach: genome-wide screening, confirmation study on the quantified expression levels, and knock-down and transfection analyses of the candidates. The probable action pathways of selected genes were examined by Ingenuity Pathway Analysis using a large-scale database, The Cancer Genome Atlas. RESULTS: The first genome-wide screening study derived 16 highly correlative genes with cellular drug sensitivity in 15 cell lines (|R| > 0.8, P < 0.01 for CDDP and 5-FU; |R| > 0.5, P < 0.05 for TXT). Among 10 genes the observed correlations were confirmed in the quantified gene expression levels, and finally knock-down and transfection analyses provided 4 molecules as the most potent predictive markers-AGR2 (anterior gradient 2 homolog gene), and PDE4D (phosphodiesterase 4D, cAMP-specific gene) for TXT; NINJ2 (nerve Injury-induced protein 2); CDC25B (cell division cycle 25 homolog B gene) for 5-FU- in both gene and protein expression levels. Overexpression of AGR2, PDE4D signified worse response to TXT, and the repressed expression sensitized TXT activity. Contrary to the findings, in the other 2 molecules, NINJ2 and CDC25, there observed opposite relationship to cellular drug response to the relevant drugs. IPA raised the potential that each selected molecule functionally interacts with main action pathway (and/or targets) of the relevant drug such as tubulin ß chain genes for TXT, DNA replication pathway for CDDP, and DNA synthesis pathway and thymidylate synthetase gene for 5-FU. CONCLUSION: We newly propose 4 molecules -AGR2, PDE4D,NINJ2 and CDC25B) as the powerful exploratory markers for prediction of cellular response to 3 key chemotherapeutic drugs in hypopharyngeal cancers and also suggest their potentials to be the therapeutic targets, which could contribute to the development of precision medicine of the essential chemotherapy in hypopharyngeal patients. (339 words).


Asunto(s)
Neoplasias Hipofaríngeas , Moléculas de Adhesión Celular Neuronal , Cisplatino/farmacología , Cisplatino/uso terapéutico , Docetaxel , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Neoplasias Hipofaríngeas/tratamiento farmacológico , Neoplasias Hipofaríngeas/genética , Mucoproteínas , Proteínas Oncogénicas , Medicina de Precisión
5.
BMC Cancer ; 21(1): 990, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479492

RESUMEN

BACKGROUND: A low tissue oxygen level, < 1% O2, is a typical characteristic inside of solid tumors in head and neck cancer (HNSCC) affecting a wide array of cell populations, such as macrophages. However, the mechanisms of how hypoxia influences macrophages are not yet fully elucidated. Our research aimed to study the effect of soluble mediators produced by hypoxic cancer cells on macrophage polarization. Furthermore, we studied the effect of a hypoxic microenvironment on the expression of tumorigenic toll-like receptor 9 (TLR9) and the consecutive macrophage polarization. METHODS: Conditioned media (CMNOX or CMHOX) from cell lines UT-SCC-8, UT-SCC-74A, FaDu, MDA-MB-231 and HaCat cultured under normoxic (21% O2) and hypoxic (1% O2) conditions were used to polarize human monocyte-derived macrophages. Macrophage polarization was measured by flow cytometry and the production of cytokine mRNA using Taqman qPCR. To study the role of TLR9 in macrophage polarization, the lentiviral CRISPR/Cas9 method was used to establish a stable FaDuTLR9def clone. RESULTS: Our results demonstrate that the soluble mediators produced by the cancer cells under normoxia polarize macrophages towards a hybridized M1/M2a/M2c phenotype. Furthermore, the results suggest that hypoxia has a limited role in altering the array of cancer-produced soluble factors affecting macrophage polarization and cytokine production. Our data also indicates that increased expression of TLR9 due to hypoxia in malignant cells does not markedly influence the polarization of macrophages. TLR9 transcriptional response to hypoxia is dissimilar to a HIF1-α-regulated LDH-A. This may indicate a context-dependent expression of TLR9 under hypoxia. CONCLUSIONS: HNSCC cell lines affect both macrophage activity (polarization) and functionality (cytokines), but with exception to iNOS expression, the effects appear independent of hypoxia and TLR9.


Asunto(s)
Neoplasias de Cabeza y Cuello/inmunología , Hipoxia/fisiopatología , Inmunomodulación , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Receptor Toll-Like 9/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Células Tumorales Cultivadas , Microambiente Tumoral/inmunología
6.
Biomolecules ; 11(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34356658

RESUMEN

MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3'UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.


Asunto(s)
Neoplasias de Cabeza y Cuello/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-maf/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Regiones no Traducidas 3' , Anciano , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metilación de ADN , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-maf/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
7.
BMC Cancer ; 21(1): 868, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34320941

RESUMEN

BACKGROUND: Currently, no clinically useful biomarkers for radioresistance are available in head and neck squamous cell carcinoma (HNSCC). This study assesses the usefulness of Cell Line Microarray (CMA) method to enhance immunohistochemical screening of potential immunohistochemical biomarkers for radioresistance in HNSCC cell lines. METHODS: Twenty-nine HNSCC cell lines were cultured, cell pellets formalin-fixed, paraffin-embedded, and arrayed. Radioresistance features of the cell lines were combined to immunohistochemical stains for p53, NDFIP1, EGFR, stem cell marker Oct4, and PP2A inhibitor CIP2A. RESULTS: Expression of p53, EGFR or CIP2A did not indicate intrinsic radioresistance in vitro. Stem cell marker Oct4 nuclear positivity and NDFIP1 nuclear positivity was correlated with increased intrinsic radioresistance. CONCLUSION: The usefulness of CMA in analysis of HNSCC cell lines and discovery of biomarkers is demonstrated. CMA is very well adapted to both testing of antibodies in a large panel of cell lines as well as correlating staining results with other cell line characteristics. In addition, CMA-based antibody screening proved an efficient and relatively simple method to identify potential radioresistance biomarkers in HNSCC.


Asunto(s)
Biomarcadores de Tumor , Perfilación de la Expresión Génica , Tolerancia a Radiación/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica/métodos , Silenciador del Gen , Humanos , Inmunohistoquímica , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Interferencia de ARN , ARN Interferente Pequeño/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
8.
Am J Cancer Res ; 11(5): 2081-2094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094670

RESUMEN

Alterations of the cell cycle checkpoints lead to uncontrolled cell growth and result in tumorigenesis. One of the genes essential for cell proliferation and cell cycle regulation is CDK1. This makes it a potential target in cancer therapy. In our previous study we have shown upregulation of this gene in laryngeal squamous cell carcinoma (LSCC). Here we analyze the impact of siRNA-mediated CDK1 knockdown on cell proliferation and viability, measured with cell growth monitoring and colorimetric test (CCK8 assay), respectively. We proved that a reduction of CDK1 expression by more than 50% has no effect on these cellular processes in LSCC cell lines (n=2). Moreover, using microarrays, we analyzed global gene expression deregulation in these cell lines after CDK1 knockdown. We searched for enriched ontologies in the group of identified 137 differentially expressed genes (>2-fold change). Within this group we found 3 enriched pathways: protein binding (GO:0005515), mitotic nuclear division (GO:0007067) and transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) and a group of 11 genes encoding proteins for which interaction with CDK1 was indicated with the use of bioinformatic tools. Among these genes we propose three: CDK6, CALD1 and FYN as potentially dependent on CDK1.

9.
Biomolecules ; 11(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923685

RESUMEN

Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: "malignancy", which separated controls from malignant samples and "cell culture-microenvironment" which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.


Asunto(s)
Carcinoma de Células Escamosas/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Laríngeas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Perfilación de la Expresión Génica/normas , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Márgenes de Escisión , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Células Tumorales Cultivadas
10.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803266

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients' stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA