Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Microbiol ; 64(11): 1375-1386, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26408040

RESUMEN

The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2%)], and higher rates of resistance to tetracycline (∼34%) and sulfamethoxazole/trimethoprim (∼45%). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4%) and erythromycin (51.6%)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the mef (efflux pump) or erm (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome.


Asunto(s)
Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana Múltiple , Macrólidos/farmacología , Infecciones Estreptocócicas/microbiología , Streptococcus/efectos de los fármacos , Adulto , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrosis Quística/tratamiento farmacológico , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/aislamiento & purificación , Adulto Joven
2.
BMC Genomics ; 14: 895, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24341328

RESUMEN

BACKGROUND: The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. RESULTS: The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. CONCLUSIONS: The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens.


Asunto(s)
Genoma Bacteriano , Filogenia , Streptococcus anginosus/clasificación , Streptococcus anginosus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Orden Génico , Transferencia de Gen Horizontal , Genes Bacterianos , Sitios Genéticos , Genómica , Histidina Quinasa , Repeticiones de Minisatélite , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Proteínas Quinasas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Streptococcus anginosus/patogenicidad , Virulencia/genética , Factores de Virulencia/genética
3.
PLoS One ; 6(7): e22702, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21829484

RESUMEN

The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured.


Asunto(s)
Bacterias/genética , Fibrosis Quística/microbiología , Metagenoma/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Esputo/microbiología , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Fibrosis Quística/genética , Código de Barras del ADN Taxonómico , Humanos , Polimorfismo de Longitud del Fragmento de Restricción
6.
Antimicrob Agents Chemother ; 54(7): 2823-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20404127

RESUMEN

Organisms belonging to the Streptococcus milleri group (SMG) are known for their role in pyogenic infections but have recently been implicated as etiological agents of pulmonary exacerbation in adult patients with cystic fibrosis (CF). The prolonged exposure of CF patients to antibiotics prompted us to investigate the susceptibility profiles of 118 SMG isolates from the airways of CF patients to 12 antibiotics compared to 43 SMG isolates from patients with invasive infections. We found that approximately 60% of all isolates failed to grow using the standard medium for disc diffusion, Mueller-Hinton blood agar (MHBA), so we explored the usefulness of brain heart infusion (BHI) agar for susceptibility testing. Zone-of-inhibition comparisons between BHI and MHBA showed strong correlations for six antibiotics, and interpretations were similar for both medium types. For ceftriaxone and cefepime, both groups of isolates were highly susceptible. Tetracycline resistance levels were comparable between the two groups (22% in CF isolates and 17.4% in invasive isolates). However, more than half of the CF isolates were not susceptible to azithromycin, erythromycin, and clindamycin, compared to 11%, 13%, and 6.5% of invasive isolates, respectively. There were 5-fold and 8-fold increased risks of azithromycin and clindamycin resistance, respectively, for the isolates from the airways of CF patients relative to the invasive isolates. Macrolide resistance was strongly linked to chronic azithromycin therapy in CF patients. This study shows that BHI agar is a suitable alternative for antimicrobial susceptibility testing for the SMG and that SMG isolates from the airways of CF patients are more resistant to macrolides and clindamycin than strains isolated from patients with invasive infections.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clindamicina/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Macrólidos/uso terapéutico , Streptococcus milleri (Grupo)/efectos de los fármacos , Azitromicina/farmacología , Azitromicina/uso terapéutico , Clindamicina/farmacología , Farmacorresistencia Bacteriana Múltiple , Eritromicina/farmacología , Eritromicina/uso terapéutico , Humanos , Macrólidos/farmacología , Tetraciclina/farmacología , Tetraciclina/uso terapéutico
7.
J Med Microbiol ; 59(Pt 5): 534-540, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20093379

RESUMEN

The 'Streptococcus milleri' group (SMG) has recently been recognized as a contributor to bronchopulmonary disease in cystic fibrosis (CF). Routine detection and quantification is limited by current CF microbiology protocols. McKay agar was developed previously for the semi-selective isolation of this group. Here, McKay agar was validated against a panel of clinical SMG isolates, which revealed improved SMG recovery compared with Columbia blood agar. The effectiveness of this medium was evaluated by appending it to the standard CF sputum microbiology protocols in a clinical laboratory for a 6-month period. All unique colony types were isolated and identified by 16S rRNA gene sequencing. Whilst a wide variety of organisms were isolated, members of the SMG were the most prevalent bacteria cultured, and McKay agar allowed routine quantification of the SMG from 10(3) to >10(8) c.f.u. ml(-1) directly from sputum. All members of the SMG were detected [Streptococcus anginosus (40.7 %), Streptococcus intermedius (34.3 %) and Streptococcus constellatus (25 %)] with an overall prevalence rate of 40.6 % in our adult CF population. Without exception, samples where SMG isolates were cultured at 10(7) c.f.u. ml(-1) or greater were associated with pulmonary exacerbations. This study demonstrates that McKay agar can be used routinely to quantify the SMG from complex clinical samples.


Asunto(s)
Medios de Cultivo/química , Fibrosis Quística/complicaciones , Infecciones Estreptocócicas/microbiología , Streptococcus anginosus/aislamiento & purificación , Streptococcus constellatus/aislamiento & purificación , Streptococcus intermedius/aislamiento & purificación , Adulto , Agar , Recuento de Colonia Microbiana/métodos , Femenino , Humanos , Masculino , Sensibilidad y Especificidad , Esputo/microbiología
8.
J Clin Microbiol ; 48(2): 395-401, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007382

RESUMEN

With the recent insights into the Streptococcus milleri group (SMG) as pulmonary pathogens in patients with cystic fibrosis (CF), we sought to characterize 128 isolates from the sputum of adults with CF, along with 45 isolates from patients with invasive diseases for comparison. The tests performed included Lancefield grouping; tests for hemolysis; tests for the production of hyaluronidase, chondroitin sulfatase, DNase, proteases, and hydrogen peroxide; and PCR for the detection of the intermedilysin gene (ily). We also generated biochemical profiles with the Rapid ID Strep 32 API system and tested cell-free supernatants for the presence of the signal molecule autoinducer-2 (AI-2) using a Vibrio harveyi bioassay with a subset of CF strains. The S. intermedius isolates from both strain collections were similar, while the S. constellatus and S. anginosus isolates yielded several biotypes that differed in prevalence between the two strain collections. Beta-hemolytic, Lancefield group C S. constellatus comprised 74.4% of the S. constellatus isolates from patients with CF but only 13.3% of the corresponding isolates from patients with invasive infections. This was the only S. constellatus biotype associated with pulmonary exacerbations. Hyaluronidase-positive S. anginosus was detected only among the isolates from patients with CF. Strain-to-strain variability in AI-2 expression was evident, with the mean values being the highest for S. anginosus, followed by S. constellatus and then S. intermedius. Cluster analysis and 16S rRNA sequencing revealed that the species of SMG could be accurately determined with a minimum of three phenotypic tests: tests for the Lancefield group, hyaluronidase production, and chondroitin sulfatase production. Furthermore, isolates from patients with invasive infections clustered with isolates from the sputum of patients with CF, suggesting that the respiratory tract isolates were equally pathogenic.


Asunto(s)
Técnicas de Tipificación Bacteriana , Fibrosis Quística/complicaciones , Esputo/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus milleri (Grupo)/clasificación , Streptococcus milleri (Grupo)/aislamiento & purificación , Adulto , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Enzimas/metabolismo , Genotipo , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Serotipificación , Streptococcus milleri (Grupo)/genética , Streptococcus milleri (Grupo)/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...