Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190585

RESUMEN

Transcranial ultrasonic stimulation (TUS) is rapidly emerging as a promising non-invasive neuromodulation technique. TUS is already well-established in animal models, providing foundations to now optimize neuromodulatory efficacy for human applications. Across multiple studies, one promising protocol, pulsed at 1000 Hz, has consistently resulted in motor cortical inhibition in humans (Fomenko et al., 2020). At the same time, a parallel research line has highlighted the potentially confounding influence of peripheral auditory stimulation arising from TUS pulsing at audible frequencies. In this study, we disentangle direct neuromodulatory and indirect auditory contributions to motor inhibitory effects of TUS. To this end, we include tightly matched control conditions across four experiments, one preregistered, conducted independently at three institutions. We employed a combined transcranial ultrasonic and magnetic stimulation paradigm, where TMS-elicited motor-evoked potentials (MEPs) served as an index of corticospinal excitability. First, we replicated motor inhibitory effects of TUS but showed through both tight controls and manipulation of stimulation intensity, duration, and auditory masking conditions that this inhibition was driven by peripheral auditory stimulation, not direct neuromodulation. Furthermore, we consider neuromodulation beyond driving overall excitation/inhibition and show preliminary evidence of how TUS might interact with ongoing neural dynamics instead. Primarily, this study highlights the substantial shortcomings in accounting for the auditory confound in prior TUS-TMS work where only a flip-over sham and no active control was used. The field must critically reevaluate previous findings given the demonstrated impact of peripheral confounds. Furthermore, rigorous experimental design via (in)active control conditions is required to make substantiated claims in future TUS studies. Only when direct effects are disentangled from those driven by peripheral confounds can TUS fully realize its potential for research and clinical applications.


Asunto(s)
Estimulación Acústica , Potenciales Evocados Motores , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Adulto , Femenino , Masculino , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Adulto Joven , Ondas Ultrasónicas
3.
Artículo en Inglés | MEDLINE | ID: mdl-34277139

RESUMEN

Introduction: Movement disorders are increasingly described in hospitalized and milder cases of SARS-CoV-2 infection, despite a very low prevalence compared to the total patients. Methods: We reviewed the scientific literature published in English, spanning from the initial descriptions of COVID-19 until January 25, 2021, in the PubMed/MEDLINE database. Results: We identified 93 new-onset movement disorders cases (44 articles) from 200 papers screened in the database or reference lists. Myoclonus was present in 63.4% (n = 59), ataxia in 38.7% (n = 36), action/postural tremor in 10.8% (n = 10), rigid-akinetic syndrome in 5.38% (n = 5), oculomotor abnormalities in 20.4% (n = 19), catatonia in 2.1% (n = 2), dystonia in 1.1% (n = 1), chorea in 1.1% (n = 1), functional (psychogenic) movement disorders in 3.2% (n = 3) of the reported COVID-19 cases with any movement disorder. Encephalopathy was a common association (n = 37, 39.78%). Discussion: Comprehensive neurophysiological, clinical, and neuroimaging descriptions of movement disorders in the setting of SARS-CoV-2 infection are still lacking, and their pathophysiology may be related to inflammatory, postinfectious, or even indirect mechanisms not specific to SARS-CoV-2, such as ischemic-hypoxic brain insults, drug effects, sepsis, kidney failure. Cortical/subcortical myoclonus, which the cited secondary mechanisms can largely cause, seems to be the most common hyperkinetic abnormal movement, and it might occur in association with encephalopathy and ataxia. Conclusion: This brief review contributes to the clinical description of SARS-CoV-2 potential neurological manifestations, assisting clinical neurologists in identifying features of these uncommon syndromes as a part of COVID-19 symptomatology. Highlights: - Movement disorders are probably uncommon neurological manifestations in SARS-CoV-2 infection;- Myoclonus is the most reported movement disorder associated with COVID-19, its clinical complications or pharmacological management;- The pathophysiology is yet not well-understood but can include systemic inflammation, autoimmune mechanisms, or hypoxia.


Asunto(s)
COVID-19/complicaciones , Trastornos del Movimiento/virología , COVID-19/epidemiología , Humanos , Trastornos del Movimiento/epidemiología
5.
Chronobiol Int ; 32(9): 1311-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26376345

RESUMEN

A circadian rhythm is a cycle of approximately 24 h, responsible for many physiological adjustments, and ageing of the circadian clock contributes to cognitive decline. Rhythmicity is severely impaired in Alzheimer disease (AD) and few therapeutic attempts succeeded in improving sleep disorders in such context. This study evaluated sleep parameters by actigraphy in 30 AD patients before and after trazodone use for 2 weeks, and we show a significant improvement in relative rhythm amplitude (RRA), compatible with a more stable daytime behavioral pattern. So, trazodone appears to produce a stabilization of the circadian rhythms in individuals with AD.


Asunto(s)
Ciclos de Actividad/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Sueño/efectos de los fármacos , Trazodona/uso terapéutico , Actigrafía , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Femenino , Humanos , Masculino , Trastornos del Sueño del Ritmo Circadiano/diagnóstico , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Factores de Tiempo , Trazodona/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...