Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micron ; 177: 103580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134566

RESUMEN

Specimens for quality transmission electron microscopy (TEM) analyses must fulfil a range of requirements, which demand high precision during the prior preparation process. In this work, an optimized procedure for conventional TEM specimen preparation is presented that exploits the thickness-dependence of interference colors occurring in birefringent materials. It facilitates the correct estimation of specimen thickness to avoid damage or breaking during mechanical thinning and reduces ion-milling times below 30 min. The benefits of the approach are shown on sapphire and silicon carbide cross-section samples. The presented method is equally suitable for assessing specimen thickness during dimpling and wedge-polishing, and is particularly useful at thicknesses below 20 µm, where the accuracy of mechanical techniques is insufficient. It is precise enough to be employed for a visual thickness estimation during the thinning process, but can be additionally optimized by analyzing the RGB spectrum of the occurring interference colors.

3.
ACS Omega ; 7(34): 30601-30621, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061736

RESUMEN

Development of light-harvesting properties and inhibition of photogenerated charge carrier recombination are of paramount significance in the photocatalytic process. In the present work, we described the synthesis of core-shell heterostructures, which are composed of titanium oxide (TiO2) and cerium oxide (CeO2) deposited on a reduced graphene oxide (rGO) surface as a conductive substrate. Following the synthesis of ternary rGO-CeO2@TiO2 and rGO-TiO2@CeO2 nanostructures, their photocatalytic activity was investigated toward the degradation of rhodamine B dye as an organic pollutant under UV light irradiation. The obtained structures were characterized with high-resolution transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy surface analysis, and UV-Vis spectroscopy. Various parameters including pH, catalyst dosage, temperature, and contact time were studied for photocatalysis optimization. Heterostructures showed considerable advantages because of their high surface area and superior photocatalytic performance. In contrast, rGO-CeO2@TiO2 showed the highest photocatalytic activity, which is attributed to the more effective electron-hole separation and quick suppression of charge recombination at core-shell phases. A biological assay of the prepared heterostructure was performed to determine the cytotoxicity against breast cancer cells (MCF-7) and demonstrated a very low survival rate at 7.65% of cells at the 17.5 mg mL-1 concentration of applied photocatalyst.

4.
MRS Bull ; 47(4): 359-370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968543

RESUMEN

In situ transmission electron microscopy (TEM) is a powerful tool for advanced material characterization. It allows real-time observation of structural evolution at the atomic level while applying different stimuli such as heat. However, the validity of analysis strongly depends on the quality of the specimen, which has to be prepared by thinning the bulk material to electron transparency while maintaining the pristine properties. To address this challenge, a novel method of TEM samples preparation in plan-view geometry was elaborated based on the combination of the wedge polishing technique and an enhanced focused ion beam (FIB) workflow. It involves primary mechanical thinning of a broad sample area from the backside followed by FIB-assisted installation on the MEMS-based sample carrier. The complete step-by-step guide is provided, and the method's concept is discussed in detail making it easy to follow and adapt for diverse equipment. The presented approach opens the world of in situ TEM heating experiments for a vast variety of fragile materials. The principle and significant advantage of the proposed method are demonstrated by new insights into the stability and thermal-induced strain relaxation of Ge Stranski-Krastanov islands on Si during in situ TEM heating. Supplementary Information: The online version contains supplementary material available at 10.1557/s43577-021-00255-5.

5.
Sci Rep ; 11(1): 20597, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663889

RESUMEN

The Si/SiGe heterosystem would be ideally suited for the realization of complementary metal-oxide-semiconductor (CMOS)-compatible integrated light sources, but the indirect band gap, exacerbated by a type-II band offset, makes it challenging to achieve efficient light emission. We address this problem by strain engineering in ordered arrays of vertically close-stacked SiGe quantum dot (QD) pairs. The strain induced by the respective lower QD creates a preferential nucleation site for the upper one and strains the upper QD as well as the Si cap above it. Electrons are confined in the strain pockets in the Si cap, which leads to an enhanced wave function overlap with the heavy holes near the upper QD's apex. With a thickness of the Si spacer between the stacked QDs below 5 nm, we separated the functions of the two QDs: The role of the lower one is that of a pure stressor, whereas only the upper QD facilitates radiative recombination of QD-bound excitons. We report on the design and strain engineering of the QD pairs via strain-dependent Schrödinger-Poisson simulations, their implementation by molecular beam epitaxy, and a comprehensive study of their structural and optical properties in comparison with those of single-layer SiGe QD arrays. We find that the double QD arrangement shifts the thermal quenching of the photoluminescence signal at higher temperatures. Moreover, detrimental light emission from the QD-related wetting layers is suppressed in the double-QD configuration.

6.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34458848

RESUMEN

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

7.
ACS Appl Mater Interfaces ; 13(5): 6960-6974, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33492947

RESUMEN

Wide range binary and ternary thin film combinatorial libraries mixing Al, Cu, and Ga were screened for identifying alloys with enhanced ability to withstand electromigration. Bidimensional test wires were obtained by lithographically patterning the substrates before simultaneous vacuum co-deposition from independent sources. Current-voltage measurement automation allowed for high throughput experimentation, revealing the maximum current density and voltage at the electrical failure threshold for each alloy. The grain boundary dynamic during electromigration is attributed to the resultant between the force corresponding to the electron flux density and the one corresponding to the atomic concentration gradient perpendicular to the current flow direction. The screening identifies Al-8 at. % Ga and Cu-5 at. % Ga for replacing pure Al or Cu connecting lines in high current/power electronics. Both alloys were deposited on polyethylene naphthalate (PEN) flexible substrates. The film adhesion to PEN is enhanced by alloying Al or Cu with Ga. Electrical testing demonstrated that Al-8 at. % Ga is more suitable for conducting lines in flexible electronics, showing an almost 50% increase in electromigration suppression when compared to pure Al. Moreover, Cu-5 at. % Ga showed superior properties as compared to pure Cu on both SiO2 and PEN substrates, where more than 100% increase in maximum current density was identified.

8.
Chemistry ; 27(10): 3192, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33432677

RESUMEN

Invited for the cover of this issue is the group of Ian Teasdale and Yolanda Salinas at the Johannes Kepler University Linz. The image depicts the self-propelled Janus micromotors reported in this work. Read the full text of the article at 10.1002/chem.202004792.

9.
Chemistry ; 27(10): 3262-3267, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33205559

RESUMEN

This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H2 O2 (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel. Conformational changes of the polymers at defined temperatures regulate the bubble formation rate and thus act as brakes with considerable deceleration/acceleration observed. As the components can be easily varied, this represents a versatile, modular platform for the exogenous velocity control of micromotors.

10.
Materials (Basel) ; 13(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722094

RESUMEN

Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga δ FeN layers with Fe y N embedded nanocrystals (NCs) via Al x Ga 1 - x N buffers with different Al concentration 0 < x Al < 41 % is presented. Through the addition of Al to the buffer, the formation of predominantly prolate-shaped ε -Fe 3 N NCs takes place. Already at an Al concentration x Al ≈ 5% the structural properties-phase, shape, orientation-as well as the spatial distribution of the embedded NCs are modified in comparison to those grown on a GaN buffer. Although the magnetic easy axis of the cubic γ '-Ga y Fe 4 - y N nanocrystals in the layer on the x Al = 0 % buffer lies in-plane, the easy axis of the ε -Fe 3 N NCs in all samples with Al x Ga 1 - x N buffers coincides with the [ 0001 ] growth direction, leading to a sizeable out-of-plane magnetic anisotropy and opening wide perspectives for perpendicular recording based on nitride-based magnetic nanocrystals.

11.
Macromol Rapid Commun ; 40(22): e1900328, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31637803

RESUMEN

The incorporation of an extraneous on-off braking system is necessary for the effective motion control of the next generation of micrometer-sized motors. Here, the design and synthesis of micromotors is reported based on mesoporous silica particles containing bipyridine groups, introduced by cocondensation, for entrapping catalytic cobalt(II) ions within the mesochannels, and functionalized on the surface with silane-derived temperature responsive bottle-brush polyphosphazene. Switching the polymers in a narrow temperature window of 25-30 °C between the swollen and collapsed state, allows the access for the fuel H2 O2 contained in the dispersion medium to cobalt(II) bipyridinato catalyst sites. The decomposition of hydrogen peroxide is monitored by optical microscopy, and effectively operated by reversibly closing or opening the pores by the grafted gate-like polyphosphazene, to control on demand the oxygen bubble generation. This design represents one of the few examples using temperature as a trigger for the reversible on-off external switching of mesoporous silica micromotors.


Asunto(s)
Compuestos Organofosforados/química , Polímeros/química , Silanos/química , Dióxido de Silicio/química , Catálisis , Cobalto/química , Peróxido de Hidrógeno/química , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Oxidantes/química , Tamaño de la Partícula , Porosidad , Temperatura
12.
Nanotechnology ; 30(6): 065602, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30523852

RESUMEN

The addition of boron to GaAs nanowires grown by self-catalyzed molecular beam epitaxy was found to have a strong effect on the nanowire morphology, with axial growth greatly reduced as the nominal boron concentration was increased. Transmission electron microscopy measurements show that the Ga catalyst droplet was unintentionally consumed during growth. Concurrent radial growth, a rough surface morphology and tapering of nanowires grown under boron flux suggest that this droplet consumption is due to reduced Ga adatom diffusion on the nanowire sidewalls in the presence of boron. Modelling of the nanowire growth puts the diffusion length of Ga adatoms under boron flux at around 700-1000 nm. Analyses of the nanowire surfaces show regions of high boron concentration, indicating the surfactant nature of boron in GaAs.

13.
Sci Rep ; 7(1): 16114, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170483

RESUMEN

The revival of interest in Ge1-xSnx alloys with x ≥ 10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic Ge1-xSnx films grown by molecular beam epitaxy. Both the growth temperature dependence and the influence of post-growth annealing steps were investigated. In either case we observe that the decomposition of epilayers with Sn concentrations of around 10% sets in above ≈230 °C, the eutectic temperature of the Ge/Sn system. Time-resolved in-situ annealing experiments in a scanning electron microscope reveal the crucial role of liquid Sn precipitates in this phase separation process. Driven by a gradient of the chemical potential, the Sn droplets move on the surface along preferential crystallographic directions, thereby taking up Sn and Ge from the strained Ge1-xSnx layer. While Sn-uptake increases the volume of the melt, single-crystalline Ge becomes re-deposited by a liquid-phase epitaxial process at the trailing edge of the droplet. This process makes phase separation of metastable GeSn layers particularly efficient at rather low temperatures.

14.
Sci Adv ; 3(8): e1700738, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28798959

RESUMEN

Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.

15.
ACS Nano ; 11(2): 1246-1256, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28135069

RESUMEN

Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3+)(6-x)[M(x+)Hal6](6-x)- (Mx+ = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 × 1011 cm Hz 1/2/W with > 110 kHz bandwidth) was obtained with (CH3NH3)3BiI6 ligands, providing the smallest relative lattice mismatch of ca. -1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of ∼1.3 cm2/(V s), a carrier lifetime of ∼70 µs, and a low residual carrier concentration of 2.6 × 1013 cm-3. Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.

16.
J Phys Chem C Nanomater Interfaces ; 120(35): 19848-19855, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27635186

RESUMEN

While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic Ag x Sn (x ∼ 4) phase, by changing the core's crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.

17.
ACS Photonics ; 3(2): 298-303, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26937421

RESUMEN

Semiconductor light-emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices. Light sources based on group IV elements would be SIT-compatible, but suffer from the poor optoelectronic properties of bulk Si and Ge. Here we demonstrate that epitaxially grown Ge quantum dots (QDs) in a defect-free Si matrix show extraordinary optical properties if partially amorphized by Ge-ion bombardment (GIB). In contrast to conventional SiGe nanostructures, these QDs exhibit dramatically shortened carrier lifetimes and negligible thermal quenching of the photoluminescence (PL) up to room temperature. Microdisk resonators with embedded GIB-QDs exhibit threshold behavior as well as a superlinear increase of the integrated PL intensity with concomitant line width narrowing as the pump power increases. These findings demonstrate light amplification by stimulated emission in a fully SIT-compatible group IV nanosystem.

18.
Nanotechnology ; 26(48): 485702, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26553384

RESUMEN

We present a comprehensive structural investigation of the Ge wetting layer (WL) and island growth on Si(001) substrates by a combination of AFM, high resolution transmission electron microscopy and the energy-differential coherent Bragg rod analysis (COBRA) x-ray method. By considering the influence of the initial Si surface morphology on the deposited Ge, these techniques provide quantitative information on the Ge content and its distribution, in particular within the WL which plays a crucial role in the formation of epitaxial nanostructures. In the WL, the Ge content was found to be above 80% for our growth conditions. Furthermore, from the digital analysis of high-resolution transmission electron microscope images, quantitative information on the strain relaxation is obtained, which complements the COBRA analysis of the Ge distribution and content in these nanostructures.

19.
Nat Mater ; 14(10): 1032-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26301766

RESUMEN

Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 µm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

20.
Microsc Microanal ; 21(3): 637-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25939606

RESUMEN

By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...