Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Bioorg Med Chem Lett ; 110: 129878, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977107

RESUMEN

A novel class of pleuromutilin derivatives possessing 1,2,3-triazole as the linker connected to phenyl analogues were designed. The antibacterial properties of the prepared compounds were assessed in vitro against five strains (E. coli, S. aureus, S. epidermidis, and E. faecalis). Most of the tested compounds displayed potent antibacterial activities against gram-positive bacteria and 14-O-[2-(4-((2,4-dinitrophenoxy)-methyl-1H-1,2,3-triazol-1-yl) acetamide)-2-methylpropan-2-yl) thioacetyl]mutilin (7c) exerted antibacterial activities against S. aureus, MRSA and S. epidermidis with MIC values 0.0625 µg/mL, representing 64-fold, 4-fold and 8-fold higher than tiamulin respectively. Compound 6e, 7c and 8c were chosen to carry out killing kinetics, which exhibited concentration-dependent effect. Subsequently, molecular modeling was conducted to further explore the binding of compound 6e, 7a, 7c, 8c and tiamulin with 50S ribosomal subunit from deinococcus radiodurans. The investigation revealed that the main interactions between compound 7c and the ribosomal residues were three hydrogen bonds, π-π, and p-π conjugate effects. Additionally, the free binding energy and docking score of 7c with the ribosome demonstrated the lowest values of -11.90 kcal/mol and -7.97 kcal/mol, respectively, consistent with its superior antibacterial activities.


Asunto(s)
Antibacterianos , Diterpenos , Pruebas de Sensibilidad Microbiana , Pleuromutilinas , Compuestos Policíclicos , Triazoles , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Relación Estructura-Actividad , Bacterias Grampositivas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Escherichia coli/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas
2.
Mater Today Bio ; 26: 101090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800564

RESUMEN

Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.

3.
Front Vet Sci ; 10: 1201382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529178

RESUMEN

Mesenchymal stem cells (MSCs) have the potential to differentiate into multi-lineage cells, suggesting their future applicability in regenerative medicine and biotechnology. The immunomodulatory properties of MSCs make them a promising replacement therapy in various fields of animal research including in canine atopic dermatitis (AD), a skin disease with 10-15% prevalence. We investigated the immunomodulatory effects of MSCs in an experimental canine AD model induced by Dermatophagoides farinae extract ointment. Canine adipose tissue-derived MSCs (cAT-MSCs) were differentiated into mesodermal cell lineages at the third passage. Alterations in immunomodulatory factors in control, AD, and MSC-treated AD groups were evaluated using flow cytometric analysis, enzyme-linked immunosorbent assay, and quantitative reverse transcription PCR. In the MSC-treated AD group, the number of eosinophils decreased, and the number of regulatory T cells (Tregs) increased compared to those in the AD group. In addition, the immunoglobulin E (IgE) and prostaglandin E2 levels were reduced in the MSC-treated AD group compared to those in the AD group. Furthermore, the filaggrin, vascular endothelial growth factor, and interleukin-5 gene expression levels were relatively higher in the MSC-treated AD group than in the AD group, however, not significantly. cAT-MSCs exerted immunomodulatory effects in an AD canine model via a rebalancing of type-1 and -2 T helper cells that correlated with increased levels of Tregs, IgE, and various cytokines.

4.
J Vet Sci ; 24(4): e53, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37532298

RESUMEN

BACKGROUND: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. OBJECTIVES: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. METHODS: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. RESULTS: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. CONCLUSIONS: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.


Asunto(s)
Orthoreovirus Mamífero 3 , Enfermedades de los Porcinos , Porcinos , Animales , Orthoreovirus Mamífero 3/genética , Intestinos , Organoides , Antivirales , Mamíferos
5.
Dev Comp Immunol ; 142: 104654, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738950

RESUMEN

Seahorses are one of the most amazing ovoviviparous fishes in the ocean because males, and not females, have evolved a brood pouch for incubating embryos. During male pregnancy, paternal seahorses need to develop effective immune protection for embryos in the brood pouch from potential infection by pathogens. Lysozymes (Lyz) are a group of antibacterial enzymes of the innate immune system that play an important role in resisting pathogen invasion. However, the immune function of lysozymes in the brood pouch of the pregnancy-lined seahorse (Hippocampus erectus) remains unknown. In this study, we found three different lysozymes in the lined seahorse: HeLyzC, HeLyzG1, and HeLyzG2. Synteny analysis revealed that HeLyzG1 and HeLyzG2 were generated by species-specific expansion rather than tandem duplication. Tissue expression patterns showed that the highest mRNA expression levels of the three lysozymes occurred in the brood pouches. Immunostimulation-induced expression analysis showed that all three HeLyzs in the brood pouches up-regulated their mRNA expression levels after Vibrio parahaemolyticus infection, but only the HeLyzG2 was upregulated after Poly(I:C) injection. Similarly, except for HeLyzC, upregulated expressions of HeLyzG1 and HeLyzG2 were found quickly in brood pouches injected with LPS. The upregulated levels of HeLyzC and HeLyzG2 in brood pouches during pregnancy were significantly higher than those in non-pregnancy, implying that seahorse lysozymes might function in the immune defense in brood pouches during pregnancy. In addition, the expression levels of HeLyzs were low in embryos in the brood pouch but significantly increased in neonates. This implies that embryos in the brood pouch might not necessarily express more lysozymes by themselves due to paternal immune protection. In conclusion, our study demonstrated that HeLyzs play an important role in immune protection during male seahorse gestation, and the synergistic effect of multiple HeLyzs may contribute to improved neonatal survival.


Asunto(s)
Smegmamorpha , Animales , Masculino , Smegmamorpha/genética , Muramidasa/genética , Peces/genética , ARN Mensajero/metabolismo , Inmunidad
6.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889640

RESUMEN

Various nano-delivery systems have been designed to deliver synthetic/botanical pesticides for improved bioactivity. However, the enhanced toxicity of nanocarrier-loaded pesticides may injure the natural enemies, and their selective toxicity should be evaluated before the large-scale application. In this context, a star polymer (SPc)-based cyantraniliprole (CNAP) nano-delivery system was constructed, and its selective toxicity was evaluated using pest Frankliniella occidentalis (WFT) and predator Orius sauteri. The amide NH of CNAP could assemble with carbonyl groups or tertiary amines of SPc through hydrogen bonds to form CNAP/SPc complex spontaneously. The above self-assembly decreased the particle size of CNAP from 808 to 299 nm. With the help of SPc, the lethal concentration 50 (LC50) values of CNAP decreased from 99 to 54 mg/L and 230 to 173 mg/L toward WFTs and O. sauteri due to the enhancement of broad-spectrum bioactivity. Interestingly, the toxicity selective ratio (TSR) of CNAP increased from 2.33 to 3.23 with the help of SPc, revealing the higher selectivity of SPc-loaded CNAP. To our knowledge, it was the first successful exploration of the selective toxicity of nanocarrier-loaded pesticides, and the higher selective toxicity of SPc-loaded CNAP was beneficial for alleviating the negative impacts on predators.

7.
ACS Appl Mater Interfaces ; 14(4): 6083-6092, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35072467

RESUMEN

Although employing nanocarriers for gene/drug delivery shows great potential in agricultural fields, the biotoxicity of nanocarriers is a major concern for large-scale applications. Herein, we synthesized a cationic star polymer (SPc) as a pesticide nanocarrier/adjuvant to evaluate its safety against a widely used predatory ladybird (Harmonia axyridis). The application of SPc at extremely high concentrations nearly did not influence the hatching of ladybird eggs but it led to the death of ladybird larvae at lethal concentration 50 (LC50) values of 43.96 and 19.85 mg/mL through the soaking and feeding methods, respectively. The oral feeding of SPc downregulated many membrane protein genes and lysosome genes significantly, and the cell membrane and nucleus in gut tissues were remarkably damaged by SPc application, revealing that the lethal mechanism might be SPc-mediated membrane damage. Furthermore, the oral feeding of SPc increased the relative abundance of Serratia bacteria in ladybird guts to result in bacterial infection. Coapplication of ladybird and SPc-loaded thiamethoxam/matrine achieved desired control efficacies of more than 80% against green peach aphids, revealing that the coapplication could overcome the slow-acting property of ladybirds. To our knowledge, this is the first attempt to investigate the polymer-mediated lethal mechanism toward natural enemies and explore the possibility of coapplying SPc-loaded pesticides and natural enemies for pest management.


Asunto(s)
Escarabajos/efectos de los fármacos , Portadores de Fármacos/química , Insecticidas/toxicidad , Ácidos Polimetacrílicos/química , Alcaloides/toxicidad , Animales , Infecciones Bacterianas/etiología , Escarabajos/microbiología , Portadores de Fármacos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Larva/efectos de los fármacos , Óvulo/efectos de los fármacos , Ácidos Polimetacrílicos/toxicidad , Quinolizinas/toxicidad , Tiametoxam/toxicidad , Matrinas
8.
Technol Cancer Res Treat ; 20: 15330338211067111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34939468

RESUMEN

Background and objective: E6 and E7 proteins in human papillomavirus (HPV) 16 are major oncogenes in several types of tumors, including lung cancer. Previous studies have demonstrated that both E6 and E7 oncoproteins can upregulate GLUT1 protein and mRNA expression levels in lung cancer cells. Thus, the present study aimed to investigate the main differences in the molecular mechanisms of GLUT1 expression regulated by E6 and E7. Methods: The double directional genetic manipulation and immunofluorescence were performed to explore the molecular mechanism of E6 or E7 upregulating the expression of GLUT1 in H1299 and A549 cell lines. Results: The overexpression of E6 in well-established lung cancer cell lines upregulated thioredoxin (Trx) protein expression. Notably, plasmid transfection or small interfering RNA transfection with E7 had no regulatory effect on Trx expression. As an important disulfide reductase of the intracellular antioxidant system, Trx plays important role in maintaining oxidative stress balance and protecting cells from oxidative damage. The overexpression of Trx increased the activation of NF-κB by upregulating p65 expression and promoting p65 nuclear translocation, and further upregulated GLUT1 protein and mRNA expression levels. The results of the present study demonstrated that E6, but not E7, upregulated GLUT1 expression in lung cancer cells by activating NF-κB due to the participation of Trx. Conclusion: These results suggest that Trx plays an important role in the pathogenesis of HPV-associated lung cancer, and propose a novel therapeutic target for HPV-associated lung cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Papillomavirus Humano 16 , Neoplasias Pulmonares/etiología , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/genética , Proteínas Represoras/metabolismo , Tiorredoxinas/genética , Línea Celular Tumoral , Susceptibilidad a Enfermedades , Transportador de Glucosa de Tipo 1/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/fisiología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología
9.
Eur J Pharmacol ; 911: 174416, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606836

RESUMEN

Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.


Asunto(s)
Cartílago Articular
10.
Biomed Res Int ; 2021: 6690704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527741

RESUMEN

Natural killer (NK) cells are key immune cells engaged in fighting infection and malignant transformation. In this study, we found that canine NK cell-derived exosomes (NK-exosomes) separated from activated cytotoxic NK cell supernatants express specific markers including CD63, CD81, Alix, HSP70, TSG101, Perforin 1, and Granzyme B. We examined the antitumor effects of NK-exosomes in an experimental murine mammary tumor model using REM134 canine mammary carcinoma cell line. We observed changes in tumor size, tumor initiation, progression, and recurrence-related markers in the control, tumor group, and NK-exosome-treated tumor group. We found that the tumor size in the NK-exosome-treated tumor group decreased compared with that of the tumor group in the REM134-driven tumorigenic mouse model. We observed significant changes including the expression of tumorigenesis-related markers, such as B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1), vascular endothelial growth factor (VEGF), matrix metallopeptidase-3 (MMP-3), interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), multidrug resistance protein (MDR), tumor suppressor protein p53 (p53), proliferating cell nuclear antigen (PCNA), and the apoptotic markers, B cell lymphoma-2 associated X (Bax) and B cell lymphoma-extra large (Bcl-xL) belonging to the Bcl-2 family, in the tumor group compared with those in the control group. The expression of CD133, a potent cancer stem cell marker, was significantly higher than that of the control. By contrast, the NK-exosome-treated tumor group exhibited a significant reduction in Bmi-1, MMP-3, IL-1ß, IL-6, TNF-α, Bax, Bcl-xL, and PCNA expression compared with that in the tumor group. Furthermore, the expression of CD133, which mediates tumorigenesis, was significantly decreased in the NK-exosome-treated tumor group compared with that in the tumor group. These findings indicate that canine NK-exosomes represent a promising therapeutic tool against canine solid tumors, including mammary carcinoma.


Asunto(s)
Exosomas/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Mamarias Animales/inmunología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Perros , Exosomas/metabolismo , Exosomas/fisiología , Femenino , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/trasplante , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Cultivo Primario de Células , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA