Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 12(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924185

RESUMEN

The modern trend of decarbonization has encouraged intensive research on renewable energy (RE)-based distributed power generation (DG) and smart grid, where advanced electronic power interfaces are necessary for connecting the generator with power grids and various electrical systems. On the other hand, modern technologies such as Industry 4.0 and electrical vehicles (EV) have higher requirements for power converters than that of conventional applications. Consequently, the enhancement of power interfaces will play an important role in the future power generation and distribution systems as well as various industrial applications. It has been discovered that wide-bandgap (WBG) switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) offer considerable potential for outperforming conventional silicon (Si) switching devices in terms of breakdown voltage, high temperature capability, switching speed, and conduction losses. This paper investigates the performance of a 2kVA three-phase static synchronous compensator (STATCOM) based on a GaN HEMTs-based voltage-source inverter (VSI) and a neural network-based hybrid control scheme. The proportional-integral (PI) controllers along with a radial basis function neural network (RBFNN) controller for fast reactive power control are designed in synchronous reference frame (SRF). Both simulation and hardware implementation are conducted. Results confirm that the proposed RBFNN assisted hybrid control scheme yields excellent dynamic performance in terms of various reactive power tracking control of the GaN HEMTs-based three-phase STATCOM system.

2.
Micromachines (Basel) ; 12(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430093

RESUMEN

Wide-bandgap (WBG) material-based switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are considered very promising candidates for replacing conventional silicon (Si) MOSFETs for various advanced power conversion applications, mainly because of their capabilities of higher switching frequencies with less switching and conduction losses. However, to make the most of their advantages, it is crucial to understand the intrinsic differences between WBG- and Si-based switching devices and investigate effective means to safely, efficiently, and reliably utilize the WBG devices. This paper aims to provide engineers in the power engineering field a comprehensive understanding of WBG switching devices' driving requirements, especially for mid- to high-power applications. First, the characteristics and operating principles of WBG switching devices and their commercial products within specific voltage ranges are explored. Next, considerations regarding the design of driving circuits for WBG switching devices are addressed, and commercial drivers designed for WBG switching devices are explored. Lastly, a review on typical papers concerning driving technologies for WBG switching devices in mid- to high-power applications is presented.

3.
Micromachines (Basel) ; 11(2)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991646

RESUMEN

Renewable energy (RE)-based power generation systems and modern manufacturing facilities utilize a wide variety of power converters based on high-frequency power electronic devices and complex switching technologies. This has resulted in a noticeable degradation in the power quality (PQ) of power systems. To solve the aforementioned problem, advanced active power filters (APFs) with improved system performance and properly designed switching devices and control algorithms can provide a promising solution because an APF can compensate for voltage sag, harmonic currents, current imbalance, and active and reactive powers individually or simultaneously. This paper demonstrates, for the first time, the detailed design procedure and performance of a digitally controlled 2 kVA three-phase shunt APF system using gallium nitride (GaN) high electron mobility transistors (HEMTs). The designed digital control scheme consists of three type II controllers with a digital signal processor (DSP) as the control core. Using the proposed APF and control algorithms, fast and accurate compensation for harmonics, imbalance, and reactive power is achieved in both simulation and hardware tests, demonstrating the feasibility and effectiveness of the proposed system. Moreover, GaN HEMTs allow the system to achieve up to 97.2% efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA