Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 14(16): 5527-37, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22422097

RESUMEN

A deep structural investigation predominantly by X-ray spectroscopic techniques is conducted on films of copper hexacyanoferrate (CuHCF) deposited under different conditions, aimed at establishing structure-properties relationships. We show that the potentiodynamic electrosynthesis of CuHCF on carbon-based surfaces produces a highly disordered material, with a variable amount of Prussian Blue (PB). The subsequent Cu(2+) intercalation induces the partial conversion of PB into CuHCF, which explains the improved electrocatalytic properties after the intercalation process. Both Cu and Fe K-edge data have been recorded. For the sample with the lower amount of PB, we could perform a multiple edge data analysis to determine the local atomic environment around both metal centres using the same set of structural parameters. The presence of high multiplicity Cu-N-C-Fe linear chains has allowed us to determine accurately the local environment of Fe while fitting the Cu K-edge data only. Using this approach we have retrieved structural information around Fe for those samples in which the concomitant presence of PB would have made impossible the analysis of the Fe K-edge. The Fe-C, C-N and Cu-N bond distances have been found in agreement with those of the bulk structures, but higher values of [Fe(CN)(6)] vacancies for the building blocks have been evidenced, reaching a value of ~45% in one sample. XANES, Raman and SEM data agree with the model proposed for each studied electrode.


Asunto(s)
Cobre/química , Técnicas Electroquímicas , Ferrocianuros/química , Membranas Artificiales , Electrodos , Microscopía Electrónica de Rastreo , Estructura Molecular , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
2.
Anal Chim Acta ; 654(2): 97-102, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19854339

RESUMEN

An amperometric sensor based on Ni(1-x)Al(x)(OH)(2)NO(3x).nH(2)O layered double hydroxide (LDH) has been developed for the electrochemical analysis in one step of two herbicides: glyphosate (N-(phosphonomethyl)glycine, Glyp) and glufosinate ((DL-homoalanine-4-yl)-methylphosphinic acid, Gluf). NiAl-LDH was prepared by coprecipitation or by electrodeposition at the Pt electrode surface. Inorganic films were fully characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Adsorption isotherms of Glyp onto this inorganic lamellar material have been established. Electrocatalytic oxidation of Glyp and Gluf is possible at the Ni(3+) centres of the structure. The electrochemical responses of the NiAl-LDH modified electrode were obtained by cyclic voltammetry and chronoamperometry at 0.49V/SCE as a function of herbicide concentration in 0.1M NaOH solution. The electrocatalytic response showed a linear dependence on the Glyp concentration ranging between 0.01 and 0.9mM with a detection limit of 1muM and sensitivity 287mA/Mcm(2). The sensitivity found for Gluf was lower (178mA/Mcm(2)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA