Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nat Commun ; 9(1): 1061, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535383

RESUMEN

The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.


Asunto(s)
Técnicas Biosensibles , Transducción de Señal/fisiología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Oncogene ; 35(32): 4179-90, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-26725323

RESUMEN

KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations.


Asunto(s)
Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mitógenos/farmacología , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ubiquitinación/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Mutación , Fosforilación/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
3.
Oncogene ; 34(27): 3536-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25195862

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.


Asunto(s)
Transformación Celular Viral/genética , Herpesvirus Humano 8/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Aciltransferasas , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Vía de Señalización Hippo , Humanos , Ratones , Ratones Desnudos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Oncogene ; 32(5): 663-9, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22391558

RESUMEN

The TET (ten-eleven translocation) family of α-ketoglutarate (α-KG)-dependent dioxygenases catalyzes the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine, leading to eventual DNA demethylation. The TET2 gene is a bona fide tumor suppressor frequently mutated in leukemia, and TET enzyme activity is inhibited in IDH1/2-mutated tumors by the oncometabolite 2-hydroxyglutarate, an antagonist of α-KG, linking 5mC oxidation to cancer development. We report here that the levels of 5hmC are dramatically reduced in human breast, liver, lung, pancreatic and prostate cancers when compared with the matched surrounding normal tissues. Associated with the 5hmC decrease is the substantial reduction of the expression of all three TET genes, revealing a possible mechanism for the reduced 5hmC in cancer cells. The decrease of 5hmC was also observed during tumor development in different genetically engineered mouse models. Together, our results identify 5hmC as a biomarker whose decrease is broadly and tightly associated with tumor development.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Citosina/análogos & derivados , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , Regulación hacia Abajo , Humanos , Hidroxilación , Ratones , Oxigenasas de Función Mixta
5.
Oncogene ; 32(25): 3091-100, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22824796

RESUMEN

Mutations in the genes encoding isocitrate dehydrogenase, IDH1 and IDH2, have been reported in gliomas, myeloid leukemias, chondrosarcomas and thyroid cancer. We discovered IDH1 and IDH2 mutations in 34 of 326 (10%) intrahepatic cholangiocarcinomas. Tumor with mutations in IDH1 or IDH2 had lower 5-hydroxymethylcytosine and higher 5-methylcytosine levels, as well as increased dimethylation of histone H3 lysine 79 (H3K79). Mutations in IDH1 or IDH2 were associated with longer overall survival (P=0.028) and were independently associated with a longer time to tumor recurrence after intrahepatic cholangiocarcinoma resection in multivariate analysis (P=0.021). IDH1 and IDH2 mutations were significantly associated with increased levels of p53 in intrahepatic cholangiocarcinomas, but no mutations in the p53 gene were found, suggesting that mutations in IDH1 and IDH2 may cause a stress that leads to p53 activation. We identified 2309 genes that were significantly hypermethylated in 19 cholangiocarcinomas with mutations in IDH1 or IDH2, compared with cholangiocarcinomas without these mutations. Hypermethylated CpG sites were significantly enriched in CpG shores and upstream of transcription start sites, suggesting a global regulation of transcriptional potential. Half of the hypermethylated genes overlapped with DNA hypermethylation in IDH1-mutant gliobastomas, suggesting the existence of a common set of genes whose expression may be affected by mutations in IDH1 or IDH2 in different types of tumors.


Asunto(s)
Colangiocarcinoma/genética , Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Neoplasias Hepáticas/genética , Secuencia de Bases , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Colangiocarcinoma/metabolismo , Islas de CpG , Metilación de ADN , Glioblastoma/metabolismo , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Mutación , Recurrencia Local de Neoplasia/genética , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-22096030

RESUMEN

Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism.


Asunto(s)
Gluconeogénesis , Glucólisis , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Piruvato Quinasa/metabolismo , Acetilación , Animales , Autofagia , Humanos , Piruvato Quinasa/antagonistas & inhibidores
7.
Cell Death Differ ; 18(1): 133-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20616807

RESUMEN

Tuberous sclerosis complex (TSC)1 and TSC2 are tumor suppressors that inhibit cell growth and mutation of either gene causes benign tumors in multiple tissues. The TSC1 and TSC2 gene products form a functional complex that has GTPase-activating protein (GAP) activity toward Ras homolog enriched in brain (Rheb) to inhibit mammalian target of rapamycin complex 1 (mTORC1), which is constitutively activated in TSC mutant tumors. We found that cells with mutation in either TSC1 or TSC2 are hypersensitive to endoplasmic reticulum (ER) stress and undergo apoptosis. Although the TSC mutant cells show elevated eIF2α phosphorylation, an early ER stress response marker, at both basal and induced conditions, induction of other ER stress response markers, including ATF4, ATF6 and C/EBP homologous protein (CHOP), is severely compromised. The defects in ER stress response are restored by raptor knockdown but not by rapamycin treatment in the TSC mutant cells, indicating that a rapamycin-insensitive mTORC function is responsible for the defects in ER stress response. Consistently, activation of Rheb sensitizes cells to ER stress. Our data show an important role of TSC1/TSC2 and Rheb in unfolded protein response and cell survival. We speculate that an important physiological function of the TSC1/2 tumor suppressors is to protect cells from harmful conditions. These observations indicate a potential therapeutic application of using ER stress agents to selectively kill TSC1 or TSC2 mutant cells for TSC treatment.


Asunto(s)
Apoptosis , Retículo Endoplásmico/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Leupeptinas/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Complejos Multiproteicos , Mutación , Neuropéptidos/metabolismo , Neuropéptidos/fisiología , Fosforilación , Proteínas/metabolismo , Proteínas/fisiología , Proteína Homóloga de Ras Enriquecida en el Cerebro , Serina-Treonina Quinasas TOR , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Respuesta de Proteína Desplegada/fisiología
8.
Acta Physiol (Oxf) ; 196(1): 55-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19243571

RESUMEN

AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Elevated AMP/ATP ratio activates AMPK, which inhibits energy-consuming processes and activates energy-producing processes to restore the energy homeostasis inside the cell. AMPK activators, metformin and thiazolidinediones, are used for the treatment of type II diabetes. Recently, reports have indicated that AMPK may also be a beneficial target for cancer treatment. Cancer cells have characteristic metabolic changes different from normal cells and, being a key metabolic regulator, AMPK may regulate the switch. AMPK may act to inhibit tumorigenesis through regulation of cell growth, cell proliferation, autophagy, stress responses and cell polarity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias/enzimología , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Autofagia/fisiología , Polaridad Celular , Metabolismo Energético/fisiología , Humanos , Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Oncogene ; 25(48): 6347-60, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17041621

RESUMEN

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls many aspects of cellular physiology, including transcription, translation, cell size, cytoskeletal organization and autophagy. Recent advances in the mTOR signaling field have found that mTOR exists in two heteromeric complexes, mTORC1 and mTORC2. The activity of mTORC1 is regulated by the integration of many signals, including growth factors, insulin, nutrients, energy availability and cellular stressors such as hypoxia, osmotic stress, reactive oxygen species and viral infection. In this review we highlight recent advances in the mTOR signaling field that relate to how the two mTOR complexes are regulated, and we discuss stress conditions linked to the mTOR signaling network that have not been extensively covered in other reviews. Given the diversity of signals that have been shown to impinge on mTOR, we also speculate on other signal-transduction pathways that may be linked to mTOR in the future.


Asunto(s)
Proteínas Quinasas/fisiología , Animales , Daño del ADN , Retroalimentación , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Quinasas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR
11.
Nat Genet ; 29(1): 25-33, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11528387

RESUMEN

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal-regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Pulmonares/prevención & control , Proteínas Proto-Oncogénicas/genética , Animales , Secuencia de Bases , Carcinógenos/toxicidad , División Celular/genética , Mapeo Cromosómico , Cartilla de ADN , Heterocigoto , Pérdida de Heterocigocidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras
12.
EMBO J ; 20(14): 3716-27, 2001 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-11447113

RESUMEN

Activating and inhibitory phosphorylation mechanisms play an essential role in regulating Raf kinase activity. Here we demonstrate that phosphorylation of C-Raf in the kinase activation loop (residues T491 and S494) is necessary, but not sufficient, for activation. C-Raf has additional activating phosphorylation sites at S338 and Y341. Mutating all four of these residues to acidic residues, S338D/Y341D/T491E/S494D (DDED), in C-Raf results in constitutive activity. However, acidic residue substitutions at the corresponding activation loop sites in B-Raf are sufficient to confer constitutive activity. B-Raf and C-Raf also utilize similar inhibitory phosphorylation mechanisms to regulate kinase activity. B-Raf has multiple inhibitory phosphorylation sites necessary for full kinase inhibition where C-Raf requires only one. We examined the functional significance of these inhibitory and activating phosphorylations in Caenorhabditis elegans lin-45 Raf. Eliminating the inhibitory phosphorylation or mimicking activating phosphorylation sites is sufficient to confer constitutive activity upon lin-45 Raf and induce multi-vulva phenotypes in C.elegans. Our results demonstrate that different members of the Raf family kinases have both common and distinct phosphorylation mechanisms to regulate kinase activity and biological function.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Línea Celular , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Células PC12 , Fosforilación , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Ratas , Homología de Secuencia de Aminoácido
13.
J Biol Chem ; 276(37): 34728-37, 2001 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-11457831

RESUMEN

Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteína de Unión al GTP cdc42/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteínas ras/fisiología , Proteína de Unión al GTP rhoA/fisiología , Animales , Células COS , Activación Enzimática , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas p21 Activadas
14.
J Biol Chem ; 276(34): 31620-6, 2001 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-11410590

RESUMEN

Phosphorylation can both positively and negatively regulate activity of the Raf kinases. Akt has been shown to phosphorylate and inhibit C-Raf activity. We have recently reported that Akt negatively regulates B-Raf kinase activation by phosphorylating multiple residues within its amino-terminal regulatory domain. Here we investigated the regulation of B-Raf by serum and glucocorticoid-inducible kinase, SGK, which shares close sequence identity with the catalytic domain of Akt but lacks the pleckstrin homology domain. We observed that SGK inhibits B-Raf activity. A comparison of substrate specificity between SGK and Akt indicates that SGK is a potent negative regulator of B-Raf. In contrast to Akt, SGK negatively regulates B-Raf kinase activity by phosphorylating only a single Akt consensus site, Ser(364). Under similar experimental conditions, SGK displays a measurably stronger inhibitory effect on B-Raf kinase activity than Akt, whereas Akt exhibits a more inhibitory effect on the forkhead transcription factor, FKHR. The selective substrate specificity is correlated with an enhanced association between Akt or SGK and their preferred substrates, FKHR and B-Raf, respectively. These results indicate that B-Raf kinase activity is negatively regulated by Akt and SGK, suggesting that the cross-talk between the B-Raf and other signaling pathways can be mediated by both Akt and SGK.


Asunto(s)
Sangre , Proteínas Nucleares , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Línea Celular , Humanos , Proteínas Inmediatas-Precoces , Fosforilación , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/química , Serina/metabolismo , Factores de Transcripción/metabolismo
15.
Exp Lung Res ; 27(3): 269-95, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11293329

RESUMEN

The Raf serine/threonine kinase plays an essential role to relay intracellular signals from the protooncogene Ras to activation of the mitogen-activated protein kinase (MAPK) cascade. The Raf kinase family consists of C-Raf (Raf-1), B-Raf, and A-Raf. Extensive efforts have been made in the last decade to study Raf regulation; however, precise molecular mechanism for Raf activation is still not fully understood. In this report, we discuss the current model of Raf regulation. Here we also report our recent findings that phosphorylation of Thr598 and Ser601, which lie between kinase subdomains VII and VIII, is essential for B-Raf activation by Ras. Substitution of these residues to alanine (B-RafAA) abolished Ras-induced B-Raf activation, without altering the association of B-Raf with other signaling proteins. Phosphopeptide mapping and immunoblotting with phosphospecific antibodies, which selectively recognize Thr598 and Ser601, phosphorylated B-Raf, confirmed that Thr598 and Ser601 are in vivo phosphorylation sites induced by Ras. Further, replacement of these two sites with acidic residues (B-RafED) renders B-Raf constitutively active. Consistent with these data, B-RafAA and B-RafED exhibited diminished and enhanced ability, respectively, to stimulate extracellular signal-regulated kinase (ERK) and Elk-dependent transcription. Moreover, functional studies revealed that B-RafED was able to promote NIH3T3 cell transformation and PC12 cell differentiation. Because Thr598 and Ser601 are conserved in all Raf family members, from Caenorhabditis elegans to mammals, we propose that phosphorylation of these two residues may be a general mechanism for Raf activation.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Diferenciación Celular , Activación Enzimática , Proteínas de Unión al GTP/metabolismo , Humanos , Técnicas In Vitro , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Células PC12 , Mapeo Peptídico , Fosforilación , Proteínas Proto-Oncogénicas c-raf/genética , Ratas , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Treonina/química , Transfección
16.
EMBO J ; 19(20): 5429-39, 2000 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-11032810

RESUMEN

The Raf kinase family serves as a central intermediate to relay signals from Ras to ERK. The precise molecular mechanism for Raf activation is still not fully understood. Here we report that phosphorylation of Thr598 and Ser601, which lie between kinase subdomains VII and VIII, is essential for B-Raf activation by Ras. Substitution of these residues by alanine (B-RafAA) abolished Ras-induced B-Raf activation without altering the association of B-Raf with other signaling proteins. Phosphopeptide mapping and immunoblotting with phospho-specific antibodies confirmed that Thr598 and Ser601 are in vivo phosphorylation sites induced by Ras. Furthermore, replacement of these two sites by acidic residues (B-RafED) renders B-Raf constitutively active. Con sistent with these data, B-RafAA and B-RafED exhibited diminished and enhanced ability, respectively, to stimulate ERK activation and Elk-dependent transcription. Moreover, functional studies revealed that B-RafED was able to promote NIH 3T3 cell transformation and PC12 cell differentiation. Since Thr598 and Ser601 are conserved in all Raf family members from Caenorhabditis elegans to mammals, we propose that phosphorylation of these two residues may be a general mechanism for Raf activation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Secuencia Conservada , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas 14-3-3 , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica , Secuencia Conservada/genética , Activación Enzimática , Proteínas HSP90 de Choque Térmico/metabolismo , MAP Quinasa Quinasa 1 , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Proteína Oncogénica p21(ras)/metabolismo , Mapeo Peptídico , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Ratas , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphB4 , Receptores de la Familia Eph , Transcripción Genética , Tirosina 3-Monooxigenasa/metabolismo
17.
EMBO J ; 19(19): 5148-56, 2000 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-11013217

RESUMEN

The c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, was shown to be involved in the response to various stresses in cultured cells. However, there is little in vivo evidence indicating a role for a JNK pathway in the stress response of an organism. We identified the Caenorhabditis elegans mek-1 gene, which encodes a 347 amino acid protein highly homologous to mammalian MKK7, an activator of JNK. Mek-1 reporter fusion proteins are expressed in pharyngeal muscle, uterus, a portion of intestine, and neurons. A mek-1 deletion mutant is hypersensitive to copper and cadmium ions and to starvation. A wild-type mek-1 transgene rescued the hypersensitivity to the metal ions. Double mutants of mek-1 with an eat-5, eat-11 or eat-18 mutation, which are characterized by a limited feeding defect, showed distinct growth defects under normal conditions. Expression of an activated form of MEK-1 in the whole animal or specifically in the pharynx inhibited pharyngeal pumping. These results suggest a role for mek-1 in stress responses, with a focus in the pharynx and/or intestine.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Cadmio/farmacología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Cobre/farmacología , Femenino , Privación de Alimentos , Respuesta al Choque Térmico , Proteínas del Helminto/aislamiento & purificación , Proteínas del Helminto/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 7 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Movimiento , Oviposición , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Alineación de Secuencia , Eliminación de Secuencia
18.
Science ; 290(5489): 144-7, 2000 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-11021801

RESUMEN

The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas , Transactivadores/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Janus Quinasa 2 , Mutación , Proteínas de Neoplasias , Fosforilación , Fosfoserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratas , Factor de Transcripción STAT3 , Transducción de Señal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Transactivadores/genética , Transfección , Técnicas del Sistema de Dos Híbridos , Proteína de Unión al GTP rac1/genética
19.
Proc Natl Acad Sci U S A ; 97(23): 12457-62, 2000 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-11035813

RESUMEN

Semaphorin molecules serve as axon guidance signals that regulate the navigation of neuronal growth cones. Semaphorins have also been implicated in other biological processes, including the immune response. Plexins, acting either alone or in complex with neuropilins, have recently been identified as functional semaphorin receptors. However, the mechanisms of signal transduction by plexins remain largely unknown. We have demonstrated a direct interaction between plexin-B1 and activated Rac. Rac specifically interacts with the cytosolic domain of plexin-B1, but not with that of plexin-A3 or -C1. Neither RhoA nor Cdc42 interacts with plexin-B1, indicating that the Rac/plexin-B1 interaction is highly specific. The binding of GTP and the integrity of the Rac effector domain are required for the interaction with plexin-B1. Furthermore, we have identified that a Cdc42/Rac interactive binding (CRIB) motif in the cytosolic domain of plexin-B1 is essential for its interaction with active Rac. We have also observed that the semaphorin CD100, a ligand for plexin-B1, stimulates the interaction between plexin-B1 and active Rac. Our results support a model by which activated Rac plays a role in mediating semaphorin signals, resulting in reorganization of actin cytoskeletal structure.


Asunto(s)
Antígenos CD , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas , Proteína de Unión al GTP rac1/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Receptores de Superficie Celular/química , Relación Estructura-Actividad
20.
J Biol Chem ; 275(35): 27354-9, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10869359

RESUMEN

B-Raf contains multiple Akt consensus sites located within its amino-terminal regulatory domain. One site, Ser(364), is conserved with c-Raf but two additional sites, Ser(428) and Thr(439), are unique to B-Raf. We have investigated the role of both the conserved and unique phosphorylation sites in the regulation of B-Raf activity in vitro and in vivo. We show that phosphorylation of B-Raf by Akt occurs at multiple residues within its amino-terminal regulatory domain, at both the conserved and unique phosphorylation sites. The alteration of the serine residues within the Akt consensus sites to alanines results in a progressive increase in enzymatic activity in vitro and in vivo. Furthermore, expression of Akt inhibits epidermal growth factor-induced B-Raf activity and inhibition of Akt with LY294002 up-regulates B-Raf activity, suggesting that Akt negatively regulates B-Raf in vivo. Our results demonstrate that B-Raf activity can be negatively regulated by Akt through phosphorylation in the amino-terminal regulatory domain of B-Raf. This cross-talk between the B-Raf and Akt serine/threonine kinases is likely to play an important role in modulating the signaling specificity of the Ras/Raf pathway and in promoting biological outcome.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Secuencia de Consenso , Activación Enzimática , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación , Pruebas de Precipitina , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-raf/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...