Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 22(3): 460-469, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692687

RESUMEN

Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.


Asunto(s)
Corteza Cerebral/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Miedo , Integrasas/metabolismo , Aprendizaje/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamoxifeno/administración & dosificación
2.
Nat Commun ; 9(1): 871, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491360

RESUMEN

Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2 driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.


Asunto(s)
Animales Recién Nacidos/fisiología , Corteza Auditiva/fisiología , Conducta Animal/fisiología , Conducta Materna/fisiología , Plasticidad Neuronal/fisiología , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Ultrasonido
3.
Neuron ; 97(4): 787-795.e6, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29398356

RESUMEN

Parkinson's disease is characterized by the progressive loss of midbrain dopamine neurons. Dopamine replacement therapy with levodopa alleviates parkinsonian motor symptoms but is complicated by the development of involuntary movements, termed levodopa-induced dyskinesia (LID). Aberrant activity in the striatum has been hypothesized to cause LID. Here, to establish a direct link between striatal activity and dyskinesia, we combine optogenetics and a method to manipulate dyskinesia-associated neurons, targeted recombination in active populations (TRAP). We find that TRAPed cells are a stable subset of sensorimotor striatal neurons, predominantly from the direct pathway, and that reactivation of TRAPed striatal neurons causes dyskinesia in the absence of levodopa. Inhibition of TRAPed cells, but not a nonspecific subset of direct pathway neurons, ameliorates LID. These results establish that a distinct subset of striatal neurons is causally involved in LID and indicate that successful therapeutic strategies for treating LID may require targeting functionally selective neuronal subtypes.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Cuerpo Estriado/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/administración & dosificación , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Optogenética
4.
Neuron ; 92(2): 392-406, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27693255

RESUMEN

Haploinsufficiency of Retinoic Acid Induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), which is associated with diverse neurodevelopmental and behavioral symptoms as well as obesity. RAI1 encodes a nuclear protein but little is known about its molecular function or the cell types responsible for SMS symptoms. Using genetically engineered mice, we found that Rai1 preferentially occupies DNA regions near active promoters and promotes the expression of a group of genes involved in circuit assembly and neuronal communication. Behavioral analyses demonstrated that pan-neural loss of Rai1 causes deficits in motor function, learning, and food intake. These SMS-like phenotypes are produced by loss of Rai1 function in distinct neuronal types: Rai1 loss in inhibitory neurons or subcortical glutamatergic neurons causes learning deficits, while Rai1 loss in Sim1+ or SF1+ cells causes obesity. By integrating molecular and organismal analyses, our study suggests potential therapeutic avenues for a complex neurodevelopmental disorder.


Asunto(s)
Conducta Animal , Regulación de la Expresión Génica/genética , Neuronas/metabolismo , Obesidad/genética , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Variaciones en el Número de Copia de ADN , Ingestión de Alimentos/genética , Técnicas de Sustitución del Gen , Ácido Glutámico/metabolismo , Haploinsuficiencia , Aprendizaje , Ratones , Ratones Noqueados , Inhibición Neural , Fenotipo , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/metabolismo
5.
Neuron ; 83(3): 645-62, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25102560

RESUMEN

The serotonin system powerfully modulates physiology and behavior in health and disease, yet the circuit mechanisms underlying serotonin neuron activity are poorly understood. The major source of forebrain serotonergic innervation is from the dorsal raphe nucleus (DR), which contains both serotonin and GABA neurons. Using viral tracing combined with electrophysiology, we found that GABA and serotonin neurons in the DR receive excitatory, inhibitory, and peptidergic inputs from the same specific brain regions. Embedded in this overall similarity are important differences. Serotonin neurons are more likely to receive synaptic inputs from anterior neocortex while GABA neurons receive disproportionally higher input from the central amygdala. Local input mapping revealed extensive serotonin-serotonin as well as GABA-serotonin connectivity with a distinct spatial organization. Covariance analysis suggests heterogeneity of both serotonin and GABA neurons with respect to the inputs they receive. These analyses provide a foundation for further functional dissection of the serotonin system.


Asunto(s)
Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , Serotonina/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/farmacología , Animales , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp/métodos
6.
PLoS One ; 9(2): e87573, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498336

RESUMEN

BACKGROUND: Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS: In this study we isolated primary hepatocytes from transgenic Per2(Luc) mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/-) Per2(Luc) cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS: Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.


Asunto(s)
Ritmo Circadiano , Hepatocitos/metabolismo , Luciferasas/metabolismo , Proteínas Circadianas Period/metabolismo , Algoritmos , Animales , Técnicas de Cocultivo , Simulación por Computador , Criptocromos/genética , Criptocromos/metabolismo , Hepatocitos/citología , Luciferasas/genética , Mediciones Luminiscentes/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía de Contraste de Fase , Modelos Biológicos , Mutación , Oscilometría/métodos , Proteínas Circadianas Period/genética , Cultivo Primario de Células , Factores de Tiempo
7.
Neuron ; 78(5): 773-84, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23764283

RESUMEN

Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.


Asunto(s)
Corteza Cerebral/citología , Regulación de la Expresión Génica/genética , Neuronas/fisiología , Recombinación Genética/genética , Análisis de Varianza , Animales , Antineoplásicos Hormonales/farmacología , Recuento de Células , Proteínas del Citoesqueleto/genética , Relación Dosis-Respuesta a Droga , Lateralidad Funcional/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hidroxitestosteronas/farmacología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Oncogénicas v-fos/genética , Estimulación Luminosa , ARN Mensajero/metabolismo , Recombinasas/genética , Privación Sensorial , Tamoxifeno/farmacología , Factores de Tiempo , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA