Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 34657, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698406

RESUMEN

The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Óvulo/metabolismo , Transducción de Señal , Proteína de Unión al GTP ran/genética , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Animales , Femenino , Fluoresceína/química , Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Óptica , Óvulo/ultraestructura , Rodaminas/química , Xenopus laevis/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteína Fluorescente Roja
2.
Nano Lett ; 13(11): 5147-52, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24111679

RESUMEN

Intracellular biochemical reactions are often localized in space and time, inducing gradients of enzymatic activity that may play decisive roles in determining cell's fate and functions. However, the techniques available to examine such enzymatic gradients of activity remain limited. Here, we propose a new method to engineer a spatial gradient of signaling protein concentration within Xenopus egg extracts using superparamagnetic nanoparticles. We show that, upon the application of a magnetic field, a concentration gradient of nanoparticles with a tunable length extension is established within confined egg extracts. We then conjugate the nanoparticles to RanGTP, a small G-protein controlling microtubule assembly. We found that the generation of an artificial gradient of Ran-nanoparticles modifies the spatial positioning of microtubule assemblies. Furthermore, the spatial control of the level of Ran concentration allows us to correlate the local fold increase in Ran-nanoparticle concentration with the spatial positioning of the microtubule-asters. Our assay provides a bottom-up approach to examine the minimum ingredients generating polarization and symmetry breaking within cells. More generally, these results show how magnetic nanoparticles and magnetogenetic tools can be used to control the spatiotemporal dynamics of signaling pathways.


Asunto(s)
Magnetismo , Nanopartículas , Proteínas/química , Transducción de Señal
3.
Lab Chip ; 11(3): 429-34, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21072407

RESUMEN

The production of micron-size droplets using microfluidic tools offers new opportunities to carry out biological assays in a controlled environment. We apply these strategies by using a flow-focusing microfluidic device to encapsulate Xenopus egg extracts, a biological system recapitulating key events of eukaryotic cell functions in vitro. We present a method to generate monodisperse egg extract-in-oil droplets and use high-speed imaging to characterize the droplet pinch-off dynamics leading to the production of trains of droplets. We use fluorescence microscopy to show that our method does not affect the biological activity of the encapsulated egg extract by observing the self-organization of microtubules and actin filaments, two main biopolymers of the cell cytoskeleton, encapsulated in the produced droplets. We anticipate that this assay might be useful for quantitative studies of biological systems in a confined environment as well as high throughput screenings for drug discovery.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación , Microfluídica/métodos , Oocitos/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Biopolímeros , Dimetilpolisiloxanos/química , Modelos Lineales , Microscopía Fluorescente , Microtúbulos/ultraestructura , Nylons/química , Xenopus laevis
4.
Curr Biol ; 19(11): 954-60, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19427215

RESUMEN

The regulation of the cytoskeleton is essential for the proper organization and function of eukaryotic cells. For instance, radial arrays of microtubules (MTs), called asters, determine the intracellular localization of organelles. Asters can be generated through either MT organizing center (MTOC)-dependent regulation or self-organization processes. In vivo, this occurs within the cell boundaries. How the properties of these boundaries affect MT organization is unknown. To approach this question, we studied the organization of microtubules inside droplets of eukaryotic cellular extracts with varying sizes and elastic properties. Our results show that the size of the droplet determined the final steady-state MT organization, which changed from symmetric asters to asymmetric semi-asters and, finally, to cortical bundles. A simple physical model recapitulated these results, identifying the main physical parameters of the transitions. The use of vesicles with more elastic boundaries resulted in very different morphologies of microtubule structures, such as asymmetrical semi-asters, "Y-branching" organizations, cortical-like bundles, "rackets," and bundled organizations. Our results highlight the importance of taking into account the physical characteristics of the cellular confinement to understand the formation of cytoskeleton structures in vivo.


Asunto(s)
Tamaño de la Célula , Microtúbulos/ultraestructura , Proteínas Motoras Moleculares/fisiología , Extractos Celulares , Membrana Celular/ultraestructura , Polaridad Celular , Microtúbulos/metabolismo , Microtúbulos/fisiología , Modelos Biológicos , Propiedades de Superficie
5.
Eur Phys J E Soft Matter ; 11(1): 105-8, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-15015093

RESUMEN

We observed fluctuations of elongated DNA molecules by fluorescence microscopy. The molecules are fixed at both ends and undulate. Mode analysis of the thermally excited undulations of the labeled DNA molecules gives access to the spectral density of the amplitude fluctuations. From these measurements we estimate the tension acting on the DNA molecules. We found the forces to be within the entropic elasticity range of a typical DNA molecule (measured on the single-molecule level).


Asunto(s)
ADN Viral/química , ADN Viral/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Micromanipulación/métodos , Microscopía Fluorescente/métodos , Modelos Moleculares , Conformación de Ácido Nucleico , Estimulación Física/métodos , Simulación por Computador , Elasticidad , Estrés Mecánico
6.
Proc Natl Acad Sci U S A ; 99(9): 6005-10, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11983896

RESUMEN

Molecular combing is a powerful procedure for aligning a large array of DNA molecules onto a surface. This technique usually leads to an overstretching of about 150% of the molecules' contour length. By changing the magnitude of capillary forces during the combing process, we were able to reduce the relative extension of the DNA molecules. Thus we achieved combing of T7 DNA with an extension close to its molecule contour length. We checked the ability of combed DNA to interact with DNA binding proteins. Using the T7 bacteriophage transcription system, we investigated the transcription activity of RNA polymerase on combed DNA by direct visualization of newly synthesized fluorescent RNAs. Our experiments show that no transcription activity occurs on overstretched DNA molecules, whereas we observe a transcription activity for nonoverstretched molecules. This activity is observed both in multiple initiation experiments and for one immobilized T7 RNA polymerase per promoter. These results open possibilities for the study of single enzyme actions on combed DNA by optical methods.


Asunto(s)
ADN/genética , ADN/ultraestructura , Técnicas Genéticas , Microscopía Fluorescente/métodos , ARN/genética , Transcripción Genética , Bacteriófago T7/genética , Microscopía por Video , Plásmidos/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...