Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(9): e0310486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39269960

RESUMEN

PURPOSE: To assess the reproducibility of radiomic features (RFs) extracted from dynamic contrast-enhanced computed tomography (DCE-CT) scans of patients diagnosed with hepatocellular carcinoma (HCC) with regards to inter-observer variability and acquisition timing after contrast injection. The predictive ability of reproducible RFs for differentiating between the degrees of HCC differentiation is also investigated. METHODS: We analyzed a set of DCE-CT scans of 39 patients diagnosed with HCC. Two radiologists independently segmented the scans, and RFs were extracted from each sequence of the DCE-CT scans. The same lesion was segmented across the DCE-CT sequences of each patient's scan. From each lesion, 127 commonly used RFs were extracted. The reproducibility of RFs was assessed with regard to (i) inter-observer variability, by evaluating the reproducibility of RFs between the two radiologists; and (ii) timing of acquisition following contrast injection (inter- and intra-imaging phase). The reproducibility of RFs was assessed using the concordance correlation coefficient (CCC), with a cut-off value of 0.90. Reproducible RFs were used for building XGBoost classification models for the differentiation of HCC differentiation. RESULTS: Inter-observer analyses across the different contrast-enhancement phases showed that the number of reproducible RFs was 29 (22.8%), 52 (40.9%), and 36 (28.3%) for the non-contrast enhanced, late arterial, and portal venous phases, respectively. Intra- and inter-sequence analyses revealed that the number of reproducible RFs ranged between 1 (0.8%) and 47 (37%), inversely related with time interval between the sequences. XGBoost algorithms built using reproducible RFs in each phase were found to be high predictive ability of the degree of HCC tumor differentiation. CONCLUSIONS: The reproducibility of many RFs was significantly impacted by inter-observer variability, and a larger number of RFs were impacted by the difference in the time of acquisition after contrast injection. Our findings highlight the need for quality assessment to ensure that scans are analyzed in the same physiologic imaging phase in quantitative imaging studies, or that phase-wide reproducible RFs are selected. Overall, the study emphasizes the importance of reproducibility and quality control when using RFs as biomarkers for clinical applications.


Asunto(s)
Carcinoma Hepatocelular , Medios de Contraste , Neoplasias Hepáticas , Variaciones Dependientes del Observador , Tomografía Computarizada por Rayos X , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Femenino , Tomografía Computarizada por Rayos X/métodos , Reproducibilidad de los Resultados , Persona de Mediana Edad , Anciano , Adulto , Radiómica
3.
PLoS One ; 19(2): e0294581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306329

RESUMEN

Contrast-enhanced computed tomography scans (CECT) are routinely used in the evaluation of different clinical scenarios, including the detection and characterization of hepatocellular carcinoma (HCC). Quantitative medical image analysis has been an exponentially growing scientific field. A number of studies reported on the effects of variations in the contrast enhancement phase on the reproducibility of quantitative imaging features extracted from CT scans. The identification and labeling of phase enhancement is a time-consuming task, with a current need for an accurate automated labeling algorithm to identify the enhancement phase of CT scans. In this study, we investigated the ability of machine learning algorithms to label the phases in a dataset of 59 HCC patients scanned with a dynamic contrast-enhanced CT protocol. The ground truth labels were provided by expert radiologists. Regions of interest were defined within the aorta, the portal vein, and the liver. Mean density values were extracted from those regions of interest and used for machine learning modeling. Models were evaluated using accuracy, the area under the curve (AUC), and Matthew's correlation coefficient (MCC). We tested the algorithms on an external dataset (76 patients). Our results indicate that several supervised learning algorithms (logistic regression, random forest, etc.) performed similarly, and our developed algorithms can accurately classify the phase of contrast enhancement.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Aprendizaje Automático , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA