Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104947, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354971

RESUMEN

Activated G protein-coupled receptors promote the dissociation of heterotrimeric G proteins into Gα and Gßγ subunits that bind to effector proteins to drive intracellular signaling responses. In yeast, Gßγ subunits coordinate the simultaneous activation of multiple signaling axes in response to mating pheromones, including MAP kinase (MAPK)-dependent transcription, cell polarization, and cell cycle arrest responses. The Gγ subunit in this complex contains an N-terminal intrinsically disordered region that governs Gßγ-dependent signal transduction in yeast and mammals. Here, we demonstrate that N-terminal intrinsic disorder is likely an ancestral feature that has been conserved across different Gγ subtypes and organisms. To understand the functional contribution of structural disorder in this region, we introduced precise point mutations that produce a stepwise disorder-to-order transition in the N-terminal tail of the canonical yeast Gγ subunit, Ste18. Mutant tail structures were confirmed using circular dichroism and molecular dynamics and then substituted for the wildtype gene in yeast. We find that increasing the number of helix-stabilizing mutations, but not isometric mutation controls, has a negative and proteasome-independent effect on Ste18 protein levels as well as a differential effect on pheromone-induced levels of active MAPK/Fus3, but not MAPK/Kss1. When expressed at wildtype levels, we further show that mutants with an alpha-helical N terminus exhibit a counterintuitive shift in Gßγ signaling that reduces active MAPK/Fus3 levels whilst increasing cell polarization and cell cycle arrest. These data reveal a role for Gγ subunit intrinsically disordered regions in governing the balance between multiple Gßγ signaling axes.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Transducción de Señal , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Elife ; 112022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084330

RESUMEN

The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Supervivencia Celular/fisiología , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Periplasma/fisiología , Membrana Celular/metabolismo , Pared Celular , Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Peptidoglicano , Transporte de Proteínas
3.
J Chem Inf Model ; 60(12): 5832-5852, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33326239

RESUMEN

We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.


Asunto(s)
Antivirales/química , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/química , Inteligencia Artificial , Sitios de Unión , Simulación por Computador , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Relación Estructura-Actividad
4.
ChemRxiv ; 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-33200117

RESUMEN

We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.

5.
J Mol Biol ; 428(18): 3588-602, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27320387

RESUMEN

Trigger factor (TF) is the only ribosome-associated chaperone in bacteria. It interacts with hydrophobic segments in nascent chain (NCs) as they emerge from the ribosome. TF binds via its N-terminal ribosome-binding domain (RBD) mainly to ribosomal protein uL23 at the tunnel exit on the large ribosomal subunit. Whereas earlier structural data suggested that TF binds as a rigid molecule to the ribosome, recent comparisons of structural data on substrate-bound, ribosome-bound, and TF in solution from different species suggest that this chaperone is a rather flexible molecule. Here, we present two cryo-electron microscopy structures of TF bound to ribosomes translating an mRNA coding for a known TF substrate from Escherichia coli of a different length. The structures reveal distinct degrees of flexibility for the different TF domains, a conformational rearrangement of the RBD upon ribosome binding, and an increase in rigidity within TF when the NC is extended. Molecular dynamics simulations agree with these data and offer a molecular basis for these observations.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA