Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microgravity Sci Technol ; 30(3): 195-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31258252

RESUMEN

Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

2.
Astrobiology ; 13(11): 1081-90, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24283929

RESUMEN

To evaluate effects of microgravity on virulence, we studied the ability of four common clinical pathogens--Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and Candida albicans--to kill wild type Caenorhabditis elegans (C. elegans) nematodes at the larval and adult stages. Simultaneous studies were performed utilizing spaceflight, clinorotation in a 2-D clinorotation device, and static ground controls. The feeding rate of worms for killed E. coli was unaffected by spaceflight or clinorotation. Nematodes, microbes, and growth media were separated until exposed to true or modeled microgravity, then mixed and grown for 48 h. Experiments were terminated by paraformaldehyde fixation, and optical density measurements were used to assay residual microorganisms. Spaceflight was associated with reduced virulence for Listeria, Enterococcus, MRSA, and Candida for both larval and adult C. elegans. These are the first data acquired with a direct in vivo assay system in space to demonstrate virulence. Clinorotation reproduced the effects of spaceflight in some, but not all, virulence assays: Candida and Enterococcus were less virulent for larval worms but not adult worms, whereas virulence of MRSA and Listeria were unaffected by clinorotation in tests with both adult and larval worms. We conclude that four common clinical microorganisms are all less virulent in space.


Asunto(s)
Candida albicans/patogenicidad , Enterococcus faecalis/patogenicidad , Listeria monocytogenes/patogenicidad , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ingravidez , Animales , Caenorhabditis elegans/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...