RESUMEN
Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS) assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB) to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7-10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity) and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii). The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment.
Asunto(s)
Antituberculosos/farmacología , Microscopía/métodos , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/efectos de los fármacos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Algoritmos , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Humanos , Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/crecimiento & desarrollo , Sensibilidad y EspecificidadRESUMEN
Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection.
Asunto(s)
Cisticercosis/inmunología , Cysticercus/inmunología , Proteínas del Helminto/inmunología , Inmunoglobulina G/biosíntesis , Enfermedades de los Porcinos/parasitología , Taenia solium/inmunología , Animales , Antígenos Helmínticos/inmunología , Catepsina L/inmunología , Cisticercosis/parasitología , Cysticercus/fisiología , Proteínas del Helminto/fisiología , Inmunoglobulina G/efectos de los fármacos , Peso Molecular , Porcinos , Enfermedades de los Porcinos/inmunología , Taenia solium/fisiología , Vacunas/inmunología , Vacunas/farmacologíaRESUMEN
Neurocysticercosis is an endemic parasitic disease caused by Taenia solium larva. Although the mechanism of infection is not completely understood, it is likely driven by proteolytic activity that degrades the intestinal wall to facilitate oncosphere penetration and further infection. We analyzed the publicly available T. solium EST/DNA library and identified two contigs comprising a full-length cDNA fragment very similar to Echinococcus granulosus Ag5 protein. The T. solium cDNA sequence included a proteolytic trypsin-like-domain in the C-terminal region, and a thrombospondin type-1 adherence-domain in the N-terminal region. Both the trypsin-like and adherence domains were expressed independently as recombinant proteins in bacterial systems. TsAg5 showed marginal trypsin-like activity and high sequence similarity to Ag5. The purified antigens were tested in a Western immunoblot assay to diagnose human neurocysticercosis. The sensitivity of the trypsin-like-domain was 96.36% in patients infected with extraparenchymal cysts, 75.44% in patients infected with multiple cysts, and 39.62% in patients with a single cyst. Specificity was 76.70%. The thrombospondin type-1 adherence-domain was not specific for neurocysticercosis.