Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(6): 106807, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37255655

RESUMEN

Dry and warm conditions have exacerbated the occurrence of large and severe wildfires over the past decade in Canada's Northwest Territories (NT). Although temperatures are expected to increase during the 21st century, we lack understanding of how the climate-vegetation-fire nexus might respond. We used a dynamic global vegetation model to project annual burn rates, as well as tree species composition and biomass in the NT during the 21st century using the IPCC's climate scenarios. Burn rates will decrease in most of the NT by the mid-21st century, concomitant with biomass loss of fire-prone evergreen needleleaf tree species, and biomass increase of broadleaf tree species. The southeastern NT is projected to experience enhanced fire activity by the late 21st century according to scenario RCP4.5, supported by a higher production of flammable evergreen needleleaf biomass. The results underlie the potential for major impacts of climate change on the NT's terrestrial ecosystems.

2.
Ecol Appl ; 26(2): 574-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27209796

RESUMEN

Human activities are historical ecological drivers, and we need to better understand their effects on ecosystems. In particular, they have been very important in the shaping of the Mediterranean biodiversity hotspot. Researchers and managers nonetheless lack knowledge concerning the impacts of their combinations and their current intensity on the structure of forest ecosystems of the southern part of the Mediterranean basin. In this study, we have develped a new methodology in order to understand the impacts of combined pastoral and woodcutting activities on the forest structure of the still ill-described but ecologically and economically important Moroccan Middle Atlas cedar forests. In a 40 000 ha forest, we chose 103 sites and sampled human activities through proxies and forest structures through circumference and vertical structures. A typology of sites yielded four human activity types: dominant pastoral activities, dominant oak cutting or cedar cutting activities, and an intermediate mid-disturbance type. This typology did not depend on altitude or substrate, confirming that the ecosystem structures linked to the different types depend more on human activities than on main environmental parameters. Pastoral activities modified forests the most, converting them to parklands with reduced canopies and low dynamics but high tree maturation. Woodcutting activities induced gap dynamics, favoring Cedrus atlantica in favorable environmental conditions and Quercus ilex otherwise, while they affected vertical structure depending on the local environment and competition for light and soil resources. Moderately disturbed stands showed forest maturation with low competition for light. Unlike previous studies, we found no evidence of a general degradation of cedar forests due to local human activities. However, cedar logging has reduced standing basal area regionally and one third of the sites may have vulnerable cedar populations due to pastoral activities and to unfavorable environmental conditions. These results can direct future research and management needs for a better protection of Mediterranean forests and parklands and their biodiversity, although to be effective such efforts must also partner with sociogeographical studies.


Asunto(s)
Crianza de Animales Domésticos , Biodiversidad , Cedrus/fisiología , Agricultura Forestal , Bosques , Humanos , Región Mediterránea , Marruecos
3.
Sci Rep ; 5: 13356, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330162

RESUMEN

Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.


Asunto(s)
Cambio Climático , Incendios , Actividades Humanas , Paleontología , Plantas , Biomasa , Canadá , Carbón Orgánico , Geografía , Humanos , Análisis de los Mínimos Cuadrados , Polen , Lluvia , Estaciones del Año , Estadísticas no Paramétricas
4.
Ecol Evol ; 5(2): 377-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25691965

RESUMEN

Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.

5.
PLoS One ; 8(6): e67245, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840639

RESUMEN

Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities.


Asunto(s)
Hormigas , Ecosistema , Especies Introducidas , Animales , Nueva Caledonia , Dinámica Poblacional
6.
New Phytol ; 199(4): 1001-1011, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23691916

RESUMEN

Strategic introduction of less flammable broadleaf vegetation into landscapes was suggested as a management strategy for decreasing the risk of boreal wildfires projected under climatic change. However, the realization and strength of this offsetting effect in an actual environment remain to be demonstrated. Here we combined paleoecological data, global climate models and wildfire modelling to assess regional fire frequency (RegFF, i.e. the number of fires through time) in boreal forests as it relates to tree species composition and climate over millennial time-scales. Lacustrine charcoals from northern landscapes of eastern boreal Canada indicate that RegFF during the mid-Holocene (6000-3000 yr ago) was significantly higher than pre-industrial RegFF (AD c. 1750). In southern landscapes, RegFF was not significantly higher than the pre-industrial RegFF in spite of the declining drought severity. The modelling experiment indicates that the high fire risk brought about by a warmer and drier climate in the south during the mid-Holocene was offset by a higher broadleaf component. Our data highlight an important function for broadleaf vegetation in determining boreal RegFF in a warmer climate. We estimate that its feedback may be large enough to offset the projected climate change impacts on drought conditions.


Asunto(s)
Cambio Climático , Ecosistema , Incendios , Árboles/fisiología , Canadá , Lagos
7.
Proc Natl Acad Sci U S A ; 109(51): 20966-70, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213207

RESUMEN

Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire-climate-vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America.


Asunto(s)
Clima , Incendios , Biomasa , Canadá , Simulación por Computador , Ecosistema , Lagos , Modelos Estadísticos , Distribución Normal , América del Norte , Polen , Estaciones del Año , Temperatura , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA