Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(15): 157202, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768325

RESUMEN

We report the observation of the anisotropic polar magneto-optical Kerr effect in thin layers of epitaxial Fe/GaAs(001) at room temperature. A clear twofold symmetry of the Kerr rotation angle depending on the orientation of the linear polarization of the probing laser beam with respect to the crystallographic directions of the sample is detected for ultrathin magnetic films saturated out of the film plane. The amplitude of the anisotropy decreases with increasing Fe film thickness, suggesting that the interfacial region is the origin of the anisotropy. The twofold symmetry is fully reproduced by model calculations based on an interference of interfacial Bychkov-Rashba and Dresselhaus spin-orbit coupling.

2.
Phys Rev Lett ; 115(13): 136601, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451572

RESUMEN

We show electric field control of the spin accumulation at the interface of the oxide semiconductor Nb-SrTiO_{3} with Co/AlO_{x} spin injection contacts at room temperature. The in-plane spin lifetime τ_{∥}, as well as the ratio of the out-of-plane to in-plane spin lifetime τ_{⊥}/τ_{∥}, is manipulated by the built-in electric field at the semiconductor surface, without any additional gate contact. The origin of this manipulation is attributed to Rashba spin orbit fields (SOFs) at the Nb-SrTiO_{3} surface and shown to be consistent with theoretical model calculations based on SOF spin flip scattering. Additionally, the junction can be set in a high or low resistance state, leading to a nonvolatile control of τ_{⊥}/τ_{∥}, consistent with the manipulation of the Rashba SOF strength. Such room temperature electric field control over the spin state is essential for developing energy-efficient spintronic devices and shows promise for complex oxide based (spin) electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...