Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-39093275

RESUMEN

BACKGROUND: Electrical storm (ES) is a life-threatening condition, associated with substantial early and subacute mortality. Catheter ablation (CA) is a well-established therapy for ES. However, data regarding the impact of CA on the short-term and midterm survival of patients admitted for ES remain unclear. OBJECTIVES: This multicenter study aimed to investigate the impact of CA of ES on survival outcomes, while accounting for key patient characteristics associated with treatment selection. METHODS: A propensity score-matching (PSM) analysis was performed on 780 consecutive patients admitted for ES in 4 tertiary centers. PSM (1:1) based on the main characteristics associated with the use of CA or medical therapy alone was performed, resulting in 2 groups of 288 patients. RESULTS: After PSM, patients who underwent CA (n = 288) and those treated with medical therapy alone (n = 288) did not present any significant differences in the main demographic characteristics, ES presentation, and management. Compared with medical therapy alone, CA was associated with a significantly lower rate of ES recurrence at 1 year (5% vs 26%; P < 0.001). Similarly, CA was associated with a higher 1-year (91% vs 81%; P < 0.001) and 3-year (78% vs 71%; P = 0.017) survival after discharge. In subgroup analyses, effect of ablation therapy remained consistent in patients older than 70 years of age (HR: 0.39; 95% CI: 0.24-0.66), with substantial efficacy in patients with a LVEF <35% (HR: 0.39; 95% CI: 0.27-0.59). CONCLUSIONS: In propensity-matched analyses, this large study shows that CA-based management of patients admitted for ES is associated with a reduction in mortality compared with medical treatment, particularly in patients with a low ejection fraction.

3.
JACC Clin Electrophysiol ; 10(9): 1982-1994, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970599

RESUMEN

BACKGROUND: Idiopathic ventricular fibrillation (IVF) can be associated with undetected distinct conditions such as microstructural cardiomyopathic alterations (MiCM) or Purkinje (Purk) activities with structurally normal hearts. OBJECTIVES: This study sought to evaluate the characteristics of recurrent VF recorded on implantable defibrillator electrograms, associated with these substrates. METHODS: This was a multicenter collaboration study. At 32 centers, we selected patients with an initial diagnosis of IVF and recurrent arrhythmia at follow-up without antiarrhythmic drugs, in whom mapping demonstrated Purk or MiCM substrate. We analyzed variables related to previous ectopy, sinus rate preceding VF, trigger, and initial VF cycle lengths. Logistic regression with cross validation was used to evaluate the performance of criteria to discriminate Purk or MiCM substrates. RESULTS: Among 95 patients (35 women, age 35 ± 11 years) meeting the inclusion criteria, IVF was associated with MiCM in 41 and Purk in 54 patients. A total of 117 arrhythmia recurrences including 91% VF were recorded on defibrillator. Three variables were mostly discriminant. Sinus tachycardia (≤570 ms) was more frequent in MiCM (35.9% vs 13.4%, P = 0.014) whereas short-coupled (<350 ms) triggers were most frequent in Purk-related VF (95.5% vs 23.1%, P = 0.001), which also had shorter VFCLs (182 ± 15 ms vs 215 ± 24 ms, P < 0.001).The multivariable combination provided the highest prediction (accuracy = 0.93 ± 0.05, range 0.833-1.000), discriminating 81% of IVF substrates with a high probability (>80%). Ectopy were inconsistently present before VF. CONCLUSIONS: Characteristics of arrhythmia recurrences on implantable cardioverter- defibrillator provide phenotypic markers of the distinct and hidden substrates underlying IVF. These findings have significant clinical and genetic implications.


Asunto(s)
Desfibriladores Implantables , Fibrilación Ventricular , Humanos , Femenino , Fibrilación Ventricular/terapia , Fibrilación Ventricular/fisiopatología , Masculino , Adulto , Persona de Mediana Edad , Recurrencia , Cardiomiopatías/fisiopatología , Cardiomiopatías/terapia , Cardiomiopatías/complicaciones , Ramos Subendocárdicos/fisiopatología , Electrocardiografía
7.
Comput Methods Programs Biomed ; 253: 108239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823116

RESUMEN

BACKGROUND: The excitable gap (EG), defined as the excitable tissue between two subsequent wavefronts of depolarization, is critical for maintaining reentry that underlies deadly ventricular arrhythmias. EG in the His-Purkinje Network (HPN) plays an important role in the maintenance of electrical wave reentry that underlies these arrhythmias. OBJECTIVE: To determine if rapid His bundle pacing (HBP) during reentry reduces the amount of EG in the HPN and ventricular myocardium to suppress reentry maintenance and/or improve defibrillation efficacy. METHODS: In a virtual human biventricular model, reentry was initiated with rapid line pacing followed by HBP delivered for 3, 6, or 9 s at pacing cycle lengths (PCLs) ranging from 10 to 300 ms (n=30). EG was calculated independently for the HPN and myocardium over each PCL. Defibrillation efficacy was assessed for each PCL by stimulating myocardial surface EG with delays ranging from 0.25 to 9 s (increments of 0.25 s, n=36) after the start of HBP. Defibrillation was successful if reentry terminated within 1 s after EG stimulation. This defibrillation protocol was repeated without HBP. To test the approach under different pathological conditions, all protocols were repeated in the model with right (RBBB) or left (LBBB) bundle branch block. RESULTS: Compared to without pacing, HBP for >3 seconds reduced average EG in the HPN and myocardium across a broad range of PCLs for the default, RBBB, and LBBB models. HBP >6 seconds terminated reentrant arrhythmia by converting HPN activation to a sinus rhythm behavior in the default (6/30 PCLs) and RBBB (7/30 PCLs) models. Myocardial EG stimulation during HBP increased the number of successful defibrillation attempts by 3%-19% for 30/30 PCLs in the default model, 3%-6% for 14/30 PCLs in the RBBB model, and 3%-11% for 27/30 PCLs in the LBBB model. CONCLUSION: HBP can reduce the amount of excitable gap and suppress reentry maintenance in the HPN and myocardium. HBP can also improve the efficacy of low-energy defibrillation approaches targeting excitable myocardium. HBP during reentrant arrhythmias is a promising anti-arrhythmic and defibrillation strategy.


Asunto(s)
Fascículo Atrioventricular , Humanos , Fascículo Atrioventricular/fisiopatología , Arritmias Cardíacas/terapia , Estimulación Cardíaca Artificial/métodos , Cardioversión Eléctrica/métodos , Ventrículos Cardíacos/fisiopatología , Modelos Cardiovasculares
9.
JACC Clin Electrophysiol ; 10(7 Pt 1): 1424-1438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661605

RESUMEN

BACKGROUND: Recent clinical studies have indicated the presence of localized electrical abnormalities in idiopathic ventricular fibrillation and J-wave syndrome patients. OBJECTIVES: This study aims to characterize the specific electrical signatures of localized repolarization and conduction heterogeneities and their respective role in vulnerability to arrhythmias. METHODS: Optical mapping was performed in porcine right ventricles with local: 1) repolarization shortening; 2) conduction slowing; or 3) structural heterogeneity induced by locally perfusing: 1) pinacidil (20 µmol/L, n = 13); or 2) flecainide (2 µmol/L, n = 13) via an epicardial catheter; or 3) by local epicardial tissue destruction (9 radiofrequency lesions n = 12). Electrograms were recorded (n = 5 in each group) and spontaneous and induced arrhythmias were quantified and optically mapped. RESULTS: Electrograms were normal in (1) but showed local fragmentation in 40% of preparations in (2) with greater effects observed at high pacing frequencies dependent on the wavefront direction. In (3), the structural substrate alone increased the width and number of peaks in the electrograms, and addition of flecainide induced pronounced fragmentation (≥3 peaks and ≥70 ms) in all cases. Occurrence of spontaneous arrhythmias was significantly increased in (1) and (2) (P < 0.0001 and 0.05, respectively, vs baseline) and were triggered by ectopies. Vulnerability to arrhythmias at high pacing frequencies (≥2 Hz) was the lowest in (1) and greatest in (2). CONCLUSIONS: Microstructural substrates have the most pronounced impact on electrograms, especially when combined with sodium channel blockers, whereas local action potential duration shortening does not lead to electrogram fragmentation even though it is associated with the highest prevalence of spontaneous arrhythmias.


Asunto(s)
Sistema de Conducción Cardíaco , Animales , Porcinos , Sistema de Conducción Cardíaco/fisiopatología , Electrocardiografía , Fibrilación Ventricular/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Flecainida/farmacología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Arritmias Cardíacas/fisiopatología , Antiarrítmicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA