Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuromuscul Disord ; 11(2): 197-207, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11257478

RESUMEN

Models of the dystrophin-glycoprotein complex do not reconcile the novel sparing of extraocular muscle in muscular dystrophy. Extraocular muscle sparing in Duchenne muscular dystrophy implies the existence of adaptive properties in these muscles that may extend protection to other neuromuscular diseases. We studied the extraocular muscle morphology and dystrophin-glycoprotein complex organization in murine targeted deletion of the gamma-sarcoglycan (gsg(-/-)) and delta-sarcoglycan (dsg(-/-)) genes, two models of autosomal recessive limb girdle muscular dystrophy. In contrast to limb and diaphragm, the principal extraocular muscles were intact in gsg(-/-) and dsg(-/-) mice. However, central nucleated, presumptive regenerative, fibers were seen in the accessory extraocular muscles (retractor bulbi, levator palpebrae superioris) of both strains. Skeletal muscles of gsg(-/-) mice exhibited in vivo Evans Blue dye permeability, while the principal extraocular muscles did not. Disruption of gamma-sarcoglycan produced secondary displacement of alpha- and beta-sarcoglycans in the extraocular muscles. The intensity of immunofluorescence for dystrophin and alpha- and beta-dystroglycan also appeared to be slightly reduced. Utrophin localization was unchanged. The finding that sarcoglycan disruption was insufficient to elicit alterations in extraocular muscle suggests that loss of mechanical stability and increased sarcolemmal permeability are not inevitable consequences of mutations that disrupt the dystrophin-glycoprotein complex organization and must be accounted for in models of muscular dystrophy.


Asunto(s)
Proteínas del Citoesqueleto/deficiencia , Glicoproteínas de Membrana/deficiencia , Distrofias Musculares/metabolismo , Músculos Oculomotores/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Distroglicanos , Distrofina/metabolismo , Técnica del Anticuerpo Fluorescente , Laminina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Miosinas/metabolismo , Músculos Oculomotores/patología , Músculos Oculomotores/fisiopatología , Fenotipo , Receptores Colinérgicos/metabolismo , Regeneración/genética , Sarcoglicanos , Sarcolema/metabolismo , Sarcolema/patología , Utrofina
2.
Hum Gene Ther ; 12(2): 205-15, 2001 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-11177557

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors allow efficient gene transfer and expression in the muscle; therefore, rAAVs represent a potential gene therapy vector for muscular dystrophies. For further investigations, we used a mouse muscular dystrophy model (gsg(-/-) mice) gamma-sarcoglycan, a subunit of the dystrophin-glycoprotein complex, is missing. gsg(-/-) mice develop progressive dystrophy representative of a severe human phenotype disease. We previously showed high levels and stable expression of gamma-sarcoglycan in myofibers after direct muscle injection into gsg(-/-) mice of a recombinant AAV vector (AAV.dMCK.gSG) carrying the gamma-sarcoglycan cDNA driven by a muscle-specific promoter (truncated version of muscle creatine kinase). Here, we show that when gamma-sarcoglycan expression is driven by the ubiquitous cytomegalovirus (CMV) promoter (AAV.CMV.gSG), lower levels of transgene expression are observed and are associated with a humoral response to gamma-sarcoglycan. When using an rAAV vector, expressing the highly immunogenic product gamma-galactosidase under the CMV promoter (AAV.CMV.LacZ), we measured a strong cellular and humoral immune response to the transgene after intramuscular injection into gsg(-/-) mice. This study suggests that restriction of transgene expression to the muscle is an important criterion for the treatment of muscular dystrophies and will aid in the design of protocols for gene therapy.


Asunto(s)
Proteínas del Citoesqueleto/biosíntesis , Dependovirus/genética , Técnicas de Transferencia de Gen , Glicoproteínas de Membrana/biosíntesis , Músculo Esquelético/metabolismo , Distrofias Musculares/terapia , Regiones Promotoras Genéticas , Animales , Células Presentadoras de Antígenos/inmunología , Western Blotting , Creatina Quinasa/genética , Células Dendríticas/inmunología , Distrofina/biosíntesis , Vectores Genéticos , Humanos , Técnicas para Inmunoenzimas , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Distrofias Musculares/genética , Distrofias Musculares/inmunología , Distrofias Musculares/metabolismo , Sarcoglicanos , Linfocitos T Citotóxicos , Transducción Genética , beta-Galactosidasa/metabolismo
3.
Mol Ther ; 1(2): 119-29, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10933922

RESUMEN

In humans, a subset of cases of Limb-girdle muscular dystrophy (LGMD) arise from mutations in the genes encoding one of the sarcoglycan (alpha, beta, gamma, or delta) subunits of the dystrophin-glycoprotein complex. While adeno-associated virus (AAV) is a potential gene therapy vector for these dystrophies, it is unclear if AAV can be used if a diseased muscle is undergoing rapid degeneration and necrosis. The skeletal muscles of mice lacking gamma-sarcoglycan (gsg-/- mice) differ from the animal models that have been evaluated to date in that the severity of the skeletal muscle pathology is much greater and more representative of that of humans with muscular dystrophy. Following direct muscle injection of a recombinant AAV [in which human gamma-sarcoglycan expression is driven by a truncated muscle creatine kinase (MCK) promoter/enhancer], we observed significant numbers of muscle fibers expressing gamma-sarcoglycan and an overall improvement of the histologic pattern of dystrophy. However, these results could be achieved only if injections into the muscle were prior to the development of significant fibrosis in the muscle. The results presented in this report show promise for AAV gene therapy for LGMD, but underscore the need for intervention early in the time course of the disease process.


Asunto(s)
Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Western Blotting , Línea Celular , Creatina Quinasa/genética , ADN Complementario/metabolismo , Elementos de Facilitación Genéticos , Exones , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Humanos , Intrones , Ratones , Ratones Mutantes , Músculo Esquelético/enzimología , Distrofias Musculares/genética , Distrofias Musculares/terapia , Fenotipo , Regiones Promotoras Genéticas , Recombinación Genética , Sarcoglicanos , Factores de Tiempo , Transducción Genética
4.
J Cell Sci ; 113 ( Pt 14): 2535-44, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10862711

RESUMEN

Sarcoglycan is a multimeric, integral membrane glycoprotein complex that associates with dystrophin. Mutations in individual sarcoglycan subunits have been identified in inherited forms of muscular dystrophy. To evaluate the contributions of sarcoglycan and dystrophin to muscle membrane stability and muscular dystrophy, we compared muscle lacking specific sarcoglycans or dystrophin. Here we report that mice lacking (delta)-sarcoglycan developed muscular dystrophy and cardiomyopathy similar to mice lacking (gamma)-sarcoglycan. However, unlike muscle lacking (gamma)-sarcoglycan, (delta)-sarcoglycan-deficient muscle was sensitive to eccentric contraction-induced disruption of the plasma membrane. In the absence of (delta)-sarcoglycan, (alpha)-, (beta)- and (gamma)-sarcoglycan were undetectable, while dystrophin was expressed at normal levels. In contrast, without (gamma)-sarcoglycan, reduced levels of (alpha)-, (beta)- and (delta)-sarcoglycan were expressed, glycosylated and formed a complex with each other. Thus, the elimination of (gamma)- and (delta)-sarcoglycan had different molecular consequences for the assembly and function of the dystrophin-glycoprotein complex. Furthermore, these molecular differences were associated with different mechanical consequences for the muscle plasma membrane. Through this in vivo analysis, a model for sarcoglycan assembly is proposed.


Asunto(s)
Cardiomiopatías/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Distrofina/genética , Distrofina/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Distrofia Muscular Animal/genética , Animales , Cardiomiopatías/genética , Permeabilidad de la Membrana Celular , Proteínas del Citoesqueleto/química , Distrofina/metabolismo , Marcación de Gen , Glicosilación , Sustancias Macromoleculares , Glicoproteínas de Membrana/química , Ratones , Ratones Endogámicos mdx , Ratones Noqueados/genética , Modelos Biológicos , Contracción Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Mutación , Miocardio/patología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Cuaternaria de Proteína/genética , Sarcoglicanos
5.
Microsc Res Tech ; 48(3-4): 167-80, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10679964

RESUMEN

Muscular dystrophy is a heterogeneous genetic disease that affects skeletal and cardiac muscle. The genetic defects associated with muscular dystrophy include mutations in dystrophin and its associated glycoproteins, the sarcoglycans. Furthermore, defects in dystrophin have been shown to cause a disruption of the normal expression and localization of the sarcoglycan complex. Thus, abnormalities of sarcoglycan are a common molecular feature in a number of dystrophies. By combining biochemistry, molecular cell biology, and human and mouse genetics, a growing understanding of the sarcoglycan complex is emerging. Sarcoglycan appears to be an important, independent mediator of dystrophic pathology in both skeletal muscle and heart. The absence of sarcoglycan leads to alterations of membrane permeability and apoptosis, two shared features of a number of dystrophies. beta-sarcoglycan and delta-sarcoglycan may form the core of the sarcoglycan subcomplex with alpha- and gamma-sarcoglycan less tightly associated to this core. The relationship of epsilon-sarcoglycan to the dystrophin-glycoprotein complex remains unclear. Animals lacking alpha-, gamma- and delta-sarcoglycan have been described and provide excellent opportunities for further investigation of the function of sarcoglycan. Dystrophin with dystroglycan and laminin may be a mechanical link between the actin cytoskeleton and the extracellular matrix. By positioning itself in close proximity to dystrophin and dystroglycan, sarcoglycan may function to couple mechanical and chemical signals in striated muscle. Sarcoglycan may be an independent signaling or regulatory module whose position in the membrane is determined by dystrophin but whose function is carried out independent of the dystrophin-dystroglycan-laminin axis.


Asunto(s)
Proteínas del Citoesqueleto/genética , Glicoproteínas de Membrana/genética , Distrofias Musculares/genética , Secuencia de Aminoácidos , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Miocardio/metabolismo , Sarcoglicanos , Homología de Secuencia de Aminoácido
6.
J Cell Biol ; 148(1): 115-26, 2000 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-10629222

RESUMEN

Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin-glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a gamma- and delta-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas Contráctiles/biosíntesis , Proteínas Contráctiles/genética , Proteínas del Citoesqueleto/genética , Distroglicanos , Filaminas , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos mdx , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Distrofias Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Conejos , Saccharomyces cerevisiae , Sarcoglicanos , Homología de Secuencia de Aminoácido
7.
Proc Natl Acad Sci U S A ; 96(19): 10723-8, 1999 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-10485893

RESUMEN

In humans, mutations in the genes encoding components of the dystrophin-glycoprotein complex cause muscular dystrophy. Specifically, primary mutations in the genes encoding alpha-, beta-, gamma-, and delta-sarcoglycan have been identified in humans with limb-girdle muscular dystrophy. Mice lacking gamma-sarcoglycan develop progressive muscular dystrophy similar to human muscular dystrophy. Without gamma-sarcoglycan, beta- and delta-sarcoglycan are unstable at the muscle membrane and alpha-sarcoglycan is severely reduced. The expression and localization of dystrophin, dystroglycan, and laminin-alpha2, a mechanical link between the actin cytoskeleton and the extracellular matrix, appears unaffected by the loss of sarcoglycan. We assessed the functional integrity of this mechanical link and found that isolated muscles lacking gamma-sarcoglycan showed normal resistance to mechanical strain induced by eccentric muscle contraction. Sarcoglycan-deficient muscles also showed normal peak isometric and tetanic force generation. Furthermore, there was no evidence for contraction-induced injury in mice lacking gamma-sarcoglycan that were subjected to an extended, rigorous exercise regimen. These data demonstrate that mechanical weakness and contraction-induced muscle injury are not required for muscle degeneration and the dystrophic process. Thus, a nonmechanical mechanism, perhaps involving some unknown signaling function, likely is responsible for muscular dystrophy where sarcoglycan is deficient.


Asunto(s)
Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/fisiología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/fisiología , Distrofia Muscular Animal/enzimología , Factores de Edad , Animales , Peso Corporal , Creatina Quinasa/sangre , Proteínas del Citoesqueleto/genética , Glicoproteínas de Membrana/genética , Ratones , Músculo Esquelético/anatomía & histología , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Mutagénesis , Condicionamiento Físico Animal/fisiología , Sarcoglicanos , Estrés Mecánico , Factores de Tiempo
8.
Mol Cell Biol ; 19(2): 1334-45, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9891067

RESUMEN

The human lbc oncogene product is a guanine nucleotide exchange factor that specifically activates the Rho small GTP binding protein, thus resulting in biologically active, GTP-bound Rho, which in turn mediates actin cytoskeletal reorganization, gene transcription, and entry into the mitotic S phase. In order to elucidate the mechanism of onco-Lbc transformation, here we report that while proto- and onco-lbc cDNAs encode identical N-terminal dbl oncogene homology (DH) and pleckstrin homology (PH) domains, proto-Lbc encodes a novel C terminus absent in the oncoprotein that includes a predicted alpha-helical region homologous to cyto-matrix proteins, followed by a proline-rich region. The lbc proto-oncogene maps to chromosome 15, and onco-lbc represents a fusion of the lbc proto-oncogene N terminus with a short, unrelated C-terminal sequence from chromosome 7. Both onco- and proto-Lbc can promote formation of GTP-bound Rho in vivo. Proto-Lbc transforming activity is much reduced compared to that of onco-Lbc, and a significant increase in transforming activity requires truncation of both the alpha-helical and proline-rich regions in the proto-Lbc C terminus. Deletion of the chromosome 7-derived C terminus of onco-Lbc does not destroy transforming activity, demonstrating that it is loss of the proto-Lbc C terminus, rather than gain of an unrelated C-terminus by onco-Lbc, that confers transforming activity. Mutations of onco-Lbc DH and PH domains demonstrate that both domains are necessary for full transforming activity. The proto-Lbc product localizes to the particulate (membrane) fraction, while the majority of the onco-Lbc product is cytosolic, and mutations of the PH domain do not affect this localization. The proto-Lbc C-terminus alone localizes predominantly to the particulate fraction, indicating that the C terminus may play a major role in the correct subcellular localization of proto-Lbc, thus providing a mechanism for regulating Lbc oncogenic potential.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas Proto-Oncogénicas/genética , Proto-Oncogenes , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Transformación Celular Neoplásica/genética , Quimera/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 7/genética , Cricetinae , Cartilla de ADN/genética , ADN Complementario/genética , Regulación de la Expresión Génica , Reordenamiento Génico , Humanos , Antígenos de Histocompatibilidad Menor , Datos de Secuencia Molecular , Proto-Oncogenes Mas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Distribución Tisular , Transfección
9.
J Cell Biol ; 142(5): 1279-87, 1998 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-9732288

RESUMEN

gamma-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine gamma-sarcoglycan gene was disrupted using homologous recombination. Mice lacking gamma-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of gamma-sarcoglycan produced secondary reduction of beta- and delta-sarcoglycan with partial retention of alpha- and epsilon-sarcoglycan, suggesting that beta-, gamma-, and delta-sarcoglycan function as a unit. Importantly, mice lacking gamma-sarco- glycan showed normal dystrophin content and local- ization, demonstrating that myofiber degeneration occurred independently of dystrophin alteration. Furthermore, beta-dystroglycan and laminin were left intact, implying that the dystrophin-dystroglycan-laminin mechanical link was unaffected by sarcoglycan deficiency. Apoptotic myonuclei were abundant in skeletal muscle lacking gamma-sarcoglycan, suggesting that programmed cell death contributes to myofiber degeneration. Vital staining with Evans blue dye revealed that muscle lacking gamma-sarcoglycan developed membrane disruptions like those seen in dystrophin-deficient muscle. Our data demonstrate that sarcoglycan loss was sufficient, and that dystrophin loss was not necessary to cause membrane defects and apoptosis. As a common molecular feature in a variety of muscular dystrophies, sarcoglycan loss is a likely mediator of pathology.


Asunto(s)
Apoptosis/genética , Distrofina/metabolismo , Glicoproteínas de Membrana/deficiencia , Proteínas Musculares/fisiología , Animales , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Distroglicanos , Histocitoquímica , Inmunohistoquímica , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Músculo Esquelético/patología , Distrofias Musculares/genética , Miocardio/patología
10.
Immunity ; 3(6): 703-14, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8777716

RESUMEN

We have previously shown using gene targeting that PU.1 is essential for the development of lymphoid and myeloid lineages during fetal liver hematopoiesis. We now show that PU.1 is required for the maturation of yolk sac-derived myeloid progenitors and for the differentiation of ES cells into macrophages. The role of PU.1 in regulating target genes, thought to be critical in the development of monocytes and granulocytes, has been analyzed. Early genes such as GM-CSFR, G-CSFR, and myeloperoxidase are expressed in PU.1-/- embryos and differentiated PU.1-/- ES cells. However, the expression of genes associated with terminal myeloid differentiation (CD11b, CD64, and M-CSFR) is eliminated in differentiated PU.1-/- ES cells. Development of macrophages is restored with the introduction of a PU.1 cDNA regulated by its own promoter. The PU.1-/- ES cells represent an important model for analyzing myeloid cell development.


Asunto(s)
Granulocitos/citología , Células Madre Hematopoyéticas/citología , Monocitos/citología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores , Animales , Secuencia de Bases , Diferenciación Celular/genética , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Granulocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Monocitos/metabolismo , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...