Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 109(1): 117-127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32672384

RESUMEN

To effectively apply microwell array cell delivery devices their biodegradation rate must be tailored towards their intended use and implantation location. Two microwell array devices with distinct degradation profiles, either suitable for the fabrication of retrievable systems in the case of slow degradation, or cell delivery systems capable of extensive remodeling using a fast degrading polymer, were compared in this study. Thin films of a poly(ethylene glycol)-poly(butylene terephthalate) (PEOT-PBT) and a poly(ester urethane) were evaluated for their in vitro degradation profiles over 34 weeks incubation in PBS at different pH values. The PEOT-PBT films showed minimal in vitro degradation over time, while the poly(ester urethane) films showed extensive degradation and fragmentation over time. Subsequently, microwell array cell delivery devices were fabricated from these polymers and intraperitoneally implanted in Albino Oxford rats to study their biocompatibility over a 12-week period. The PEOT-PBT implants shown to be capable to maintain the microwell structure over time. Implants provoked a foreign body response resulting in multilayer fibrosis that integrated into the surrounding tissue. The poly(ester urethane) implants showed a loss of the microwell structures over time, as well as a fibrotic response until the onset of fragmentation, at least 4 weeks post implantation. It was concluded that the PEOT-PBT implants could be used as retrievable cell delivery devices while the poly(ester urethane) implants could be used for cell delivery devices that require remodeling within a 4-12 week period.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Polietilenglicoles/química , Poliuretanos/química , Andamios del Tejido/química , Animales , Biodegradación Ambiental , Humanos , Técnicas In Vitro , Fenómenos Mecánicos , Pruebas Mecánicas , Modelos Animales , Tereftalatos Polietilenos/química , Prótesis e Implantes , Ratas , Regeneración , Resistencia a la Tracción , Ingeniería de Tejidos
3.
Tissue Eng Part C Methods ; 24(11): 628-636, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30306836

RESUMEN

IMPACT STATEMENT: This research deals with finding a proper bioengineering strategy for the creation of improved ß-cell replacement therapy in type 1 diabetes. It specifically deals with the microenvironment of ß-cells and its relationship to their endocrine function.


Asunto(s)
Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Secreción de Insulina , Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Colágeno Tipo IV/química , Fibronectinas/química , Insulinoma/patología , Neoplasias Pancreáticas/patología , Impresión Tridimensional , Ratas , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA