Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1140, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277694

RESUMEN

The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Corteza Prefrontal , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefontal Dorsolateral/diagnóstico por imagen , Mapeo Encefálico/métodos
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39046457

RESUMEN

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Corteza Visual , Vías Visuales , Humanos , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen de Difusión Tensora/métodos , Mapeo Encefálico/métodos , Vías Visuales/fisiología , Vías Visuales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos
3.
Elife ; 122023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36888685

RESUMEN

The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.


Asunto(s)
Complejo IV de Transporte de Electrones , Corteza Visual , Animales , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Mapeo Encefálico , Corteza Visual/fisiología , Disparidad Visual , Imagen por Resonancia Magnética
4.
Commun Biol ; 4(1): 1069, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521987

RESUMEN

Primary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region.


Asunto(s)
Corteza Visual Primaria/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
5.
Cereb Cortex ; 30(8): 4496-4514, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32297628

RESUMEN

Short association fibers (U-fibers) connect proximal cortical areas and constitute the majority of white matter connections in the human brain. U-fibers play an important role in brain development, function, and pathology but are underrepresented in current descriptions of the human brain connectome, primarily due to methodological challenges in diffusion magnetic resonance imaging (dMRI) of these fibers. High spatial resolution and dedicated fiber and tractography models are required to reliably map the U-fibers. Moreover, limited quantitative knowledge of their geometry and distribution makes validation of U-fiber tractography challenging. Submillimeter resolution diffusion MRI-facilitated by a cutting-edge MRI scanner with 300 mT/m maximum gradient amplitude-was used to map U-fiber connectivity between primary and secondary visual cortical areas (V1 and V2, respectively) in vivo. V1 and V2 retinotopic maps were obtained using functional MRI at 7T. The mapped V1-V2 connectivity was retinotopically organized, demonstrating higher connectivity for retinotopically corresponding areas in V1 and V2 as expected. The results were highly reproducible, as demonstrated by repeated measurements in the same participants and by an independent replication group study. This study demonstrates a robust U-fiber connectivity mapping in vivo and is an important step toward construction of a more complete human brain connectome.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Neuronas/citología , Vías Visuales/citología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA