Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 494(1-2): 95-8, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11297742

RESUMEN

MtdA catalyzes the dehydrogenation of N(5),N(10)-methylenetetrahydromethanopterin (methylene-H4MPT) with NADP(+) as electron acceptor. In the reaction two prochiral centers are involved, C14a of methylene-H4MPT and C4 of NADP(+), between which a hydride is transferred. The two diastereotopic protons at C14a of methylene-H4MPT and at C4 of NADPH can be seen separately in 1H-NMR spectra. This fact was used to determine the stereospecificity of the enzyme. With (14aR)-[14a-2H(1)]-[14a-13C]methylene-H4MPT as the substrate, it was found that the pro-R hydrogen of methylene-H4MPT is transferred by MtdA into the pro-R position of NADPH.


Asunto(s)
Methylobacterium extorquens/enzimología , NADP/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Pterinas/química
2.
Eur J Biochem ; 267(12): 3762-9, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10848995

RESUMEN

Cell extracts of Methylobacterium extorquens AM1 were recently found to catalyze the dehydrogenation of methylene tetrahydromethanopterin (methylene H4MPT) with NAD+ and NADP+. The purification of a 32-kDa NADP-specific methylene H4MPT dehydrogenase (MtdA) was described already. Here we report on the characterization of a second methylene H4MPT dehydrogenase (MtdB) from this aerobic alpha-proteobacterium. Purified MtdB with an apparent molecular mass of 32 kDa was shown to catalyze the oxidation of methylene H4MPT to methenyl H4MPT with NAD+ and NADP+ via a ternary complex catalytic mechanism. The Km for methylene H4MPT was 50 microM with NAD+ (Vmax = 1100 U x mg(-1) and 100 microM with NADP+ (Vmax = 950 U x mg(-1). The Km value for NAD+ was 200 microM and for NADP+ 20 microM. In contrast to MtdA, MtdB could not catalyze the dehydrogenation of methylene tetrahydrofolate. Via the N-terminal amino-acid sequence, the MtdB encoding gene was identified to be orfX located in a cluster of genes whose translated products show high sequence identities to enzymes previously found only in methanogenic and sulfate reducing archaea. Despite its location, MtdB did not show sequence similarity to archaeal enzymes. The highest similarity was to MtdA, whose encoding gene is located outside of the archaeal island. Mutants defective in MtdB were unable to grow on methanol and showed a pronounced sensitivity towards formaldehyde. On the basis of the mutant phenotype and of the kinetic properties, possible functions of MtdB and MtdA are discussed. We also report that both MtdB and MtdA can be heterologously overproduced in Escherichia coli making these two enzymes readily available for structural analysis.


Asunto(s)
Methylobacterium extorquens/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Secuencia de Aminoácidos , División Celular/genética , Escherichia coli/genética , Formaldehído/farmacología , Cinética , Metanol/metabolismo , Methylobacterium extorquens/efectos de los fármacos , Methylobacterium extorquens/genética , Datos de Secuencia Molecular , Mutación , NAD/metabolismo , NADP/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA