Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.074
Filtrar
1.
Anal Chim Acta ; 1324: 343071, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218571

RESUMEN

BACKGROUND: Environmental endocrine disruptors (EEDs) are a class of new pollutants that are diffusely used in the medical industry and animal husbandry. In view of toxicity concerns, elevated levels of EEDs in the environment and food, which cause potential harm to human beings and ecosystems, must be monitored. Determination of EEDs contaminants to ensure environment and food safety has became a major concern worldwide, it is also a challenging task because of their trace level and probable matrices interference. Thus, developing rapid adsorption and efficient analysis methods for EEDs is apparently necessary. RESULTS: A magnetic conjugated micro-porous polymer (Fe3O4@TbDt) was designed and synthesized, which was endowed with large specific surface area, rich functional groups and magnetic responsiveness. The material showed high extraction efficiency for EEDs via magnetic solid-phase extraction (MSPE). The quantum chemistry calculations showed the adsorption mechanism of Fe3O4@TbDt on EEDs mainly included electrostatic interactions, van der waals forces (N-H … π interaction, C-H … π interaction), and multiple hydrogen bonds. Finally, a trace analysis method for nine EEDs was established combined with HPLC-MS/MS under optimized MSPE conditions. The method showed a good linearity (R2 ≥ 0.996), low limits of detection (0.25-5.1 ng L-1), high precision (RSD of 1.1-8.2 %, n = 6). The applicability of this method was investigated by analyzing four water samples and two dairy products, and satisfactory recovery rates (82.1-100.7 %) were obtained. The proposed method showed the potential for the analysis of EEDs residues in food and environmental samples. SIGNIFICANCE: The developed MSPE method based on conjugated micro-porous polymers (CMPs) is simple, green, and efficient compared to existing techniques. The application of CMPs provides a new idea for preparing versatile sample pre-treatment materials. What's more, this work has certain reference value for addressing of EEDs residues in the environment and food.


Asunto(s)
Productos Lácteos , Disruptores Endocrinos , Polímeros , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Disruptores Endocrinos/análisis , Disruptores Endocrinos/aislamiento & purificación , Porosidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida/métodos , Productos Lácteos/análisis , Adsorción , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Límite de Detección
2.
Mar Life Sci Technol ; 6(3): 562-575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219678

RESUMEN

Phosphorus concentration on the surface of seawater varies greatly with different environments, especially in coastal. The molecular mechanism by which cyanobacteria adapt to fluctuating phosphorus bioavailability is still unclear. In this study, transcriptomes and gene knockouts were used to investigate the adaptive molecular mechanism of a model coastal cyanobacterium Synechococcus sp. PCC 7002 during periods of phosphorus starvation and phosphorus recovery (adding sufficient phosphorus after phosphorus starvation). The findings indicated that phosphorus deficiency affected the photosynthesis, ribosome synthesis, and bacterial motility pathways, which recommenced after phosphorus was resupplied. Even more, most of the metabolic pathways of cyanobacteria were enhanced after phosphorus recovery compared to the control which was kept in continuous phosphorus replete conditions. Based on transcriptome, 54 genes potentially related to phosphorus-deficiency adaptation were selected and knocked out individually or in combination. It was found that five mutants showed weak growth phenotype under phosphorus deficiency, indicating the importance of the genes (A0076, A0549-50, A1094, A1320, A1895) in the adaptation of phosphorus deficiency. Three mutants were found to grow better than the wild type under phosphorus deficiency, suggesting that the products of these genes (A0079, A0340, A2284-86) might influence the adaptation to phosphorus deficiency. Bioinformatics analysis revealed that cyanobacteria exposed to highly fluctuating phosphorus concentrations have more sophisticated phosphorus acquisition strategies. These results elucidated that Synechococcus sp. PCC 7002 have variable phosphorus response mechanisms to adapt to fluctuating phosphorus concentration, providing a novel perspective of how cyanobacteria may respond to the complex and dynamic environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00244-y.

3.
Bioorg Chem ; 152: 107768, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39216196

RESUMEN

Alzheimer's disease is associated both with imbalances in Al3+ production and changes in viscosity in cells. Their simultaneous measurement could therefore provide valuable insights into Alzheimer's disease pathology. Their simultaneous measurement would therefore be of great value in investigating the pathological mechanism of Alzheimer's disease. We designed a fluorescent probe YM2T with AIE effect that is capable of selectively responding to Al3+ by fluorescence colormetrics and to viscosity by fluorescence "turn on" modes. Additionally, Al3+ and viscosity were simultaneously detected in PC12 cells using the low cytotoxic probe YM2T via blue and green fluorescence channels. More importantly, the YM2T probe was used to image mice with AD. Hence, the YM2T probe shows potential as a useful molecular instrument for studying the pathological impact of Al3+ and viscosity.

4.
Nat Chem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134777

RESUMEN

Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal-organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor-acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting.

5.
J Asian Nat Prod Res ; : 1-21, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132822

RESUMEN

This study aims to explore the mechanisms of the inhibitory effect of kaempferol on the invasion and metastasis of gastric cancer (GC) cells through network pharmacology prediction and experimental verification. It identifies core targets via PPI network analysis and finds that kaempferol binds to these targets well. In vitro experiments showed that kaempferol could inhibit the proliferation, colony formation, migration and invasion of GC cells. Western blotting indicated kaempferol may reduce AKT and GSK3ß phosphorylation, leading to lower expression of invasion-related genes SRC, MMP9, CXCR4, KDR, and MMP2. Overall, kaempferol may prevent migration and invasion of GC cells via the AKT/GSK3ß signaling pathway.

6.
Commun Biol ; 7(1): 994, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143188

RESUMEN

Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.


Asunto(s)
Anabaena , Sistemas CRISPR-Cas , Edición Génica , Synechocystis , Edición Génica/métodos , Synechocystis/genética , Anabaena/genética , Anabaena/metabolismo , Genoma Bacteriano , Cianobacterias/genética , Cianobacterias/metabolismo
7.
ACS Chem Biol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160165

RESUMEN

S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.

8.
Chem Soc Rev ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163028

RESUMEN

Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.

10.
Angew Chem Int Ed Engl ; : e202414506, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214860

RESUMEN

The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.

11.
Int Immunopharmacol ; 140: 112874, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116498

RESUMEN

OBJECTIVE: Colorectal cancer (CRC), specifically colon adenocarcinoma, is the third most prevalent and the second most lethal form of cancer. Anoikis is found to be specialized form of programmed cell death (PCD), which plays a pivotal role in tumor progression. This study aimed to investigate the role of the anoikis related genes (ARGs) in colon cancer. METHODS: Consensus unsupervised clustering, differential expression analysis, tumor mutational burden analysis, and analysis of immune cell infiltration were utilized in the study. For the analysis of RNA sequences and clinical data of COAD patients, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were obtained. A prognostic scoring system for overall survival (OS) prediction was developed using Cox regression and LASSO regression analysis. Furthermore, loss-of-function assay was utilized to explore the role of RAD9A played in the progression of colon cancer. RESULTS: The prognostic value of a risk score composed of NTRK2, EPHA2, RAD9A, CDC25C, and SNAI1 genes was significant. Furthermore, these findings suggested potential mechanisms that may influence prognosis, supporting the development of individualized treatment plans and management of patient outcomes. Further experiments confirmed that RAD9A could promote proliferation and metastasis of colon cancer cells. These effects may be achieved by affecting the phosphorylation of AKT. CONCLUSION: Differences in survival time and the tumor immune microenvironment (TIME) were observed between two gene clusters associated with ARGs. In addition, a prognostic risk model was established and confirmed as an independent risk factor. Furthermore, our data indicated that RAD9A promoted tumorigenicityby activating AKT in colon cancer.


Asunto(s)
Anoicis , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Neoplasias del Colon/inmunología , Anoicis/genética , Pronóstico , Línea Celular Tumoral , Masculino , Proliferación Celular , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Femenino
12.
J Phys Chem Lett ; 15(32): 8233-8239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39102567

RESUMEN

The microscopic structure of the material's solid-liquid interface significantly influences its physicochemical properties. Peak force infrared microscopy (PFIR) is a powerful technique for analyzing these interfaces at the nanoscale, revealing crucial structure-activity relationships. PFIR is recognized for its explicit photothermal signal generation mechanism but tends to overlook other photoinduced forces, which can disturb the obtained infrared spectra, thereby reducing spectral signal-to-noise ratio (SNR) and sensitivity. We have developed a multiphysics-coupled theoretical model to assess the magnitudes of various photoinduced forces in PFIR experiments and have found that the magnitude of the photoacoustic force is comparable to that of the photothermal expansion force in a liquid environment. Our calculations show that through simple modulation of the pulse waveform it is possible to effectively suppress the photoacoustic interference, thereby improving the SNR and sensitivity of PFIR. This work aims to alert researchers to the potential for strong photoacoustic interference in liquid-phase PFIR measurements and enhance the performance of PFIR by clarifying the photoinduced forces entangled in the signals.

13.
Curr Med Sci ; 44(4): 854-863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112916

RESUMEN

OBJECTIVE: This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses. METHODS: PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells. RESULTS: The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results. CONCLUSION: LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.


Asunto(s)
Antiinflamatorios , Supervivencia Celular , Reparación del ADN , Lipopolisacáridos , Saponinas , Triterpenos , Animales , Células PC12 , Ratas , Lipopolisacáridos/farmacología , Triterpenos/farmacología , Saponinas/farmacología , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
14.
World J Surg Oncol ; 22(1): 224, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192289

RESUMEN

PURPOSE: Although the potential association between autoimmune thyroiditis and papillary thyroid cancer (PTC) has been acknowledged, whether the clinicopathological features of PTC will be affected by thyroid autoantibodies remains unknown. PATIENTS AND METHODS: We conducted a case-control study to investigate the association of thyroid autoantibodies with clinicopathological characteristics of PTC in 15,305 patients (including 11,465 females and 3,840 males) from 3 medical centers in the central province of China. Logistic regression and restricted cubic spline models were performed to analyze the association of thyroid autoantibodies with clinicopathological features of PTC. RESULTS: In total, out of the 15,305 patients enrolled in this study, 10,087 (65.9%) had negative thyroid autoantibodies, while 5,218(34.1%) tested positive thyroid autoantibodies. Among these individuals, 1,530(10.0%) showed positivity for TPOAb only, 1,247(8.2%) for TGAb only and a further 2,441(15.9%) exhibited dual positivity for both TPOAb and TGAb combined. Thyroid autoantibodies level demonstrated significant correlations with certain aggressive features in PTC. Specifically, TGAb level displayed a direct correlation to an increased likelihood of multifocality, bilateral tumor, extrathyroidal extension, lymph node metastasis, as well as more than five affected lymph nodes. However, TPOAb level exhibited an inverse association with the risk associated with extrathyroidal extension, lymph node metastasis, and more than five affected lymph nodes. CONCLUSION: Elevated level of TGAb were positively correlated with the risk of aggressive features in PTC, while high level of TPOAb were inversely associated with the risk of extrathyroidal extension and lymph node metastasis.


Asunto(s)
Autoanticuerpos , Neoplasias de la Tiroides , Humanos , Femenino , Estudios de Casos y Controles , Masculino , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Persona de Mediana Edad , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/sangre , Adulto , Pronóstico , Estudios de Seguimiento , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/patología , Metástasis Linfática , Carcinoma Papilar/inmunología , Carcinoma Papilar/patología , Carcinoma Papilar/sangre , China/epidemiología , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/sangre , Adulto Joven , Anciano
15.
Front Cardiovasc Med ; 11: 1439913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188319

RESUMEN

Background: Coronary heart disease (CHD) is one of the common chronic diseases in clinical practice, often accompanied by inflammatory reactions. In recent years, the system inflammation response index (SIRI) has aroused researchers' interest as a novel inflammatory biomarker. This study aims to explore the relationship between the SIRI and CHD through the National Health and Nutrition Examination Survey (NHANES) database. Methods: We conducted a cross-sectional study and analyzed participants aged 40 and above with complete data from the NHANES survey years 2007-2016. Logistic regression analysis was used in this study to explore the relationship between the risk of CHD and SIRI. Stratified subgroup analysis was conducted based on age, gender, race, education level, body mass index (BMI), smoking status, drinking, hypertension, diabetes and angina pectoris to evaluate the relationship between SIRI and CHD in different populations. Additionally, restricted cubic spline (RCS) analysis was employed to investigate whether there is a nonlinear association between SIRI and CHD. Results: A total of 6374 eligible participants were included, among whom 387 were diagnosed with CHD. The SIRI levels in the CHD group were significantly higher than those in the non-CHD group. After adjusting for potential confounders, an elevated SIRI level was associated with an increased risk of CHD, with an odds ratio of 1.12, 95% CI: (1.03, 1.22), P = 0.008. Subgroup analysis results indicated a significant interaction between SIRI and CHD among genders (P for interaction <0.05), especially in females. In contrast, no significant interaction was observed among age, race, education level, BMI, smoking status, drinking, hypertension, diabetes and angina pectoris (P for interaction >0.05). The RCS analysis showed a significant linear relationship between SIRI and CHD (P for non-linearity >0.05), with an inflection point at 2.86. Conclusion: Our study indicates that an elevated system inflammation response index is associated with a higher risk of CHD. Particularly among women.

16.
Front Neurol ; 15: 1369414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108659

RESUMEN

Objective: To explore the spatial relationship between A1 segment proximal anterior cerebral artery aneurysms and their main trunks, classify them anatomically and develop targeted treatment strategies. Methods: This single-center retrospective analysis involved 39 patients diagnosed with aneurysms originating from the proximal of A1 segment of the anterior cerebral artery (2014-2023). Classify the patient's aneurysm into 5 types based on the location of the neck involving the carrier artery and the spatial relationship and projection direction of the aneurysm body with the carrier artery, and outcomes from treatment methods were compared. Results: Among 39 aneurysms, 18 cases underwent endovascular intervention treatment, including 6 cases of stent assisted embolization, 1 case of flow-diverter embolization, 5 cases of balloon assisted embolization, and 6 cases of simple coiling. At discharged, the mRS score of all endovascularly treated patients was 0, and the GOS score was 5 at 6 months after discharge. At discharge, the mRS score of microsurgical clipping treated patients was 0 for 15 cases, 3 for 1 case, 4 for 1 case and 5 for 2 cases. Six months after discharge, the GOS score was 5 for 16 cases, 4 for 2 cases, 3 for 2 cases, and 1 for 1 case. GOS outcomes at 6 months were better for endovascularly treated patients (p = 0.047). Conclusion: Results showed better outcomes for the endovascular treatment group compared to microsurgical clipping at 6 months after surgery. The anatomical classification of aneurysms in this region may be of help to develop effective treatment strategies.

17.
Int J Biol Macromol ; 277(Pt 4): 134501, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111483

RESUMEN

This study employs an optimized and environmentally friendly method to extract and purify chondroitin sulfate (CS) from bovine nasal cartilage using enzymatic hydrolysis, ethanol precipitation, and DEAE Sepharose Fast Flow column chromatography. The extracted CS, representing 44.67 % ± 0.0016 of the cartilage, has a molecular weight of 7.62 kDa. Characterization through UV, FT-IR, NMR spectroscopy, and 2-aminoacridone derivatization HPLC revealed a high content of sulfated disaccharides, particularly ΔDi4S (73.59 %) and ΔDi6S (20.61 %). Interaction studies with bovine serum albumin (BSA) using fluorescence spectroscopy and molecular docking confirmed a high-affinity, static quenching interaction with a single binding site, primarily mediated by van der Waals forces and hydrogen bonding. The interaction did not significantly alter the polarity or hydrophobicity of BSA aromatic amino acids. These findings provide a strong foundation for exploring the application of CS in tissue engineering and drug delivery systems, leveraging its unique interaction with BSA for targeted delivery and enhanced efficacy.

18.
Angew Chem Int Ed Engl ; : e202412643, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101718

RESUMEN

While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6% ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.

19.
J Chem Phys ; 161(7)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39145565

RESUMEN

The elasticities of double-stranded (ds) DNA and RNA, which are critical to their biological functions and applications in materials science, can be significantly modulated by solution conditions such as ions and temperature. However, there is still a lack of a comprehensive understanding of the role of solvents in the elasticities of dsRNA and dsDNA in a comparative way. In this work, we explored the effect of ethanol solvent on the elasticities of dsRNA and dsDNA by magnetic tweezers and all-atom molecular dynamics simulations. We found that the bending persistence lengths and contour lengths of dsRNA and dsDNA decrease monotonically with the increase in ethanol concentration. Furthermore, the addition of ethanol weakens the positive twist-stretch coupling of dsRNA, while promotes the negative twist-stretch coupling of dsDNA. Counter-intuitively, the lower dielectric environment of ethanol causes a significant re-distribution of counterions and enhanced ion neutralization, which overwhelms the enhanced repulsion along dsRNA/dsDNA, ultimately leading to the softening in bending for dsRNA and dsDNA. Moreover, for dsRNA, ethanol causes slight ion-clamping across the major groove, which weakens the major groove-mediated twist-stretch coupling, while for dsDNA, ethanol promotes the stretch-radius correlation due to enhanced ion binding and consequently enhances the helical radius-mediated twist-stretch coupling.


Asunto(s)
ADN , Etanol , Simulación de Dinámica Molecular , ARN Bicatenario , Etanol/química , ADN/química , ARN Bicatenario/química , Elasticidad , Conformación de Ácido Nucleico
20.
Heliyon ; 10(15): e34991, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157315

RESUMEN

Common cancer complications include bone cancer pain (BCP), which was not sufficiently alleviated by traditional analgesics. More safe and effective therapy was urgent needed. Metformin relieved osteoarthritis pain, but the analgesia of Metformin in BCP was not well studied. The study aimed to explore the Metformin-mediated analgesic effect and its molecular mechanisms in BCP rats. We demonstrated that Walker 256 cell transplantation into the medullary cavity of the tibia worsened mechanical allodynia in BCP rats, increased the expression of TGFß1 in the metastatic bone tissue, and raised the expression of TGFßRI and TRPV1 in the L4-6 dorsal root ganglion (DRG) of BCP rats. While, selectively blockade of TGFßRI by SD208 could obviously elevated the paw withdraw threshold (PWT) of BCP rats, together with decreased TRPV1 expression in L4-6 DRG. Notably, continuous Metformin treatment reduced TGFß1, TGFßRI and TRPV1 expression, and relieved mechanical allodynia of BCP rats in a long-term effect. In conclusion, these results illustrated that Metformin ameliorated bone cancer pain, and the downregulation of TGFß1-TGFßRI-TRPV1 might be a potential mechanism of Metformin-mediated analgesia in BCP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA