Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(42): 38828-38838, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901569

RESUMEN

CuFe2O4 nanoparticles were synthesized and immobilized on sepiolite fibers and graphene oxide sheets, producing a CuFe2O4/sepiolite/GO (CFSG) nanocomposite via a facile single-pot method. The synthesized nanocomposite was characterized using TEM, FTIR, SEM-EDX, XRD, and TGA techniques to determine its composition, structure, and thermal stability. The adsorptive removal of Pb(II) and Cd(II) heavy metal ions from aqueous solutions was studied using the synthesized CFSG nanocomposite. Adsorption parameters such as CFSG loading, pH, contact time, and temperature were investigated. The CFGS nanocomposite showed a higher Pb(II) removal (qm = 238.1 mg/g) compared to Cd(II) (qm = 14.97 mg/g) in a Pb(II) and Cd(II) binary system. The Pb(II) and Cd(II) adsorption fitted well with the Langmuir model, followed by the pseudo-second-order model, and was found spontaneous. Adsorption thermodynamic analysis showed that the Pb(II) adsorption process was exothermic while Cd(II) adsorption was endothermic. The CuFe2O4 nanoparticles on the CFSG surface could facilitate the adsorption of heavy metal ions through electrostatic interaction and complexation processes.

2.
Chemosphere ; 341: 139984, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657696

RESUMEN

The discharge of amoxicillin (AMX) from pharmaceutical intermediates has adverse effects on aquatic ecosystems. The elimination of AMX requires advanced oxidation processes (AOPs) that utilize high-performance photocatalysts. Furthermore, the design of highly visible light photocatalysts for AOPs demands both cost-effectiveness and efficiency. In this work, a plasmon-assisted visible light photocatalyst of 2D Ag-CoFe2O4 nanohybrids was successfully synthesized and characterized with several analytical tools to degrade AMX in aqueous solutions through advanced AOPs. The results showed that the Ag-CoFe2O4 nanohybrids had excellent photocatalytic activity and stability, which could efficiently reduce the AMX concentration by 99% within 70 min under visible light irradiation. In particular, CoFe2O4 and Ag have an interfacial contact that prevents electron-hole pair recombination more effectively than pure CoFe2O4, which results in electrons in its conduction band (CB) migrating to metallic Ag sites. Thus, charge transfers between the two materials are more efficient, leading to higher photocatalytic oxidation of AMX. Furthermore, the surface plasmon of Ag nanoparticles are excited by their plasmonic resonance, which increases the absorption of visible light. The plasmon-assisted visible light photocatalyst could replace expensive and energy-intensive advanced oxidation processes (AOPs). AOPs pathways associated with AMX have been discussed in detail. The HPLC chromatogram clearly showed AMX was oxidized by four-membered B-lactam ring opening and hydroxylation with •OH. 2D Ag-CoFe2O4 heterostructure was found to be efficient, selective, and cost-effective for the degradation of several pharmaceutical compounds. Additionally, it was found to be eco-friendly and sustainable, making it a viable alternative to AOPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Ecosistema , Catálisis , Plata/química , Luz , Preparaciones Farmacéuticas
3.
Pharmaceutics ; 15(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986729

RESUMEN

The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.

4.
ACS Omega ; 8(7): 6982-6993, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844521

RESUMEN

Herein, we report the synthesis of α-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure α-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.

5.
Chemosphere ; 299: 134752, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35513083

RESUMEN

The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.


Asunto(s)
Durapatita , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Concentración de Iones de Hidrógeno , Cinética , Extractos Vegetales , Contaminantes Químicos del Agua/análisis
6.
Environ Res ; 212(Pt C): 113301, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35483412

RESUMEN

The formation of phase pure magnetically separable α-Fe2O3 and α-Fe2O3/rGO nanostructures were achieved through a simple hydrothermal technique. The properties of synthesized materials were investigated through different analytical techniques. The formation of phase pure FO and FO/rGO nanostructures were confirmed by XRD analysis with crystallite size of about ∼42 nm and ∼65 nm, respectively. The morphological analysis reveals the formation of sphere-like nanoparticles with high agglomeration. The UV-DRS analysis clearly shows the enhanced visible-light activity of FO/rGO nanoparticles. The BET analysis revealed the mesoporous property of FO/rGO nanocomposite. The enhancement in the photoinduced charge transfer process is observed after including rGO nanoparticles with FO. The photocatalytic efficiency of nanomaterials was analyzed using tetracycline and ibuprofen as model organic pollutants under white LED irradiation. The enhanced photocatalytic degradation ability of FO/rGO nanocomposite is studied against both tetracycline and ibuprofen molecules.


Asunto(s)
Ibuprofeno , Nanocompuestos , Tetraciclina , Antibacterianos , Catálisis , Grafito , Ibuprofeno/química , Nanocompuestos/química , Óxidos/química , Procesos Fotoquímicos , Tetraciclina/química
7.
Chemosphere ; 299: 134439, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35351477

RESUMEN

Dual-functional photo (electro)catalysis (PEC) is a key strategy for removing coexisting heavy metals and phenolic compounds from wastewater treatment systems. To design a PEC cell, it is crucial to use chemically stable and cost-effective bifunctional photocatalysts. The present study shows that ruthenium metallic nanoparticles decorated with CoFe2O4/RGO (Ru-CoFe2O4/RGO) are effective bifunctional photoelectrodes for the reduction of Cr(VI) ions. Ru-CoFe2O4/RGO achieves a maximum Cr(VI) reduction rate of 99% at 30 min under visible light irradiation, which is much higher than previously reported catalysts. Moreover, PEC Cr(VI) reduction rate is also tuned by adding varying concentration of phenol. A mechanism for the concurrent removal of Cr(VI) and phenol has been revealed over a bifunctional Ru-CoFe2O4/RGO catalyst. A number of key conclusions emerged from this study, demonstrating the dual role of phenol during Cr(VI) reduction by PEC. Anodic oxidation of phenol produces the enormous H+ ion, which appears to be a key component of Cr(VI) reduction. Additionally, phenolic molecules serve as hole (h+) scavengers that reduce e-/h+ recombination, thus enhancing the reduction rate of Cr(VI). Therefore, the Ru-CoFe2O4/RGO photoelectrode exhibits a promising capability of reducing both heavy metals and phenolic compounds simultaneously in wastewater.


Asunto(s)
Nanopartículas del Metal , Fenoles , Catálisis , Cromo/química , Grafito , Oxidación-Reducción , Fenol
8.
Angew Chem Int Ed Engl ; 61(13): e202200905, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35068021

RESUMEN

The ordered open organic frameworks membranes are attractive candidates for flow-assisted molecular separations. The physicochemical properties of such membranes mostly depend on their selectively chosen functional building blocks. In this work, we have introduced a novel concept of functional switchability of three-dimensional covalent organic framework (3D-COF) membranes through a simple solvent-influenced fragmentation method. This room-temperature interfacial synthesis provides free-standing 3D-COF membranes with distinct physicochemical properties from the same building monomers. Notably, the change of solvent from chloroform to ethyl acetate switches the membrane property from hydrophilic (water contact angle 60°) to hydrophobic (water contact angle 142°) nature. The hydrophobic 3D-COF membrane selectively passes oil molecules from an oil-water emulsion with a gravitational flux of 1536 L m-2 h-1 .

9.
Mikrochim Acta ; 189(1): 37, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34958414

RESUMEN

A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co3O4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure's bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co2O4/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co2O4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM-1 cm-2), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor's selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.


Asunto(s)
Cobalto/química , Dopamina/análisis , Nanocompuestos/química , Óxidos/química , Zinc/química , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Dopamina/química , Electrodos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
10.
Environ Res ; 196: 110429, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33171121

RESUMEN

A facile hydrothermal assisted in-situ precipitation technique was employed for synthesizing highly efficient porous graphitic carbon/manganese dioxide (PGC/MnO2) nanocomposite adsorbent using calcium alginate as carbon precursor. Morphological and structural characterization using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction techniques confirmed the interconnected nanoporous architecture and birnessite (δ) MnO2 polymorph evenly distributed on the PGC structure. The synergistic effect of PGC and MnO2 was exploited for enhanced sulfide removal from wastewater via adsorptive oxidation. The effect of different experimental parameters, including solution pH, initial sulfide concentration, adsorbent dosage, and contact time on removal efficiency was investigated. The equilibrium and kinetic data for sulfide adsorption by PGC/MnO2 nanocomposite fitted well with Langmuir isotherm and pseudo-second-order kinetic model, respectively. The maximum uptake capacity of sulfide by the nanocomposite was determined as 500 mg/g with complete sulfide removal. Further, it was estimated that a typical field application using the synthesized nanocomposite adsorbent would require 0.5-1 g/L per 200 mg/L of sulfide contaminated wastewater. Based on the experimental results, a schematic of the adsorptive oxidation mechanism of PGC/MnO2 nanocomposite is proposed.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Carbono , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Manganeso , Óxidos , Porosidad , Sulfuros , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA