Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 32812-32823, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38878000

RESUMEN

This study presents a novel three-dimensional (3D) printable gallium-carbon black-styrene isoprene styrene block copolymer (Ga-CB-SIS), offering a versatile solution for the rapid fabrication of stretchable and integrated sensor-heater-battery systems in wearable and recyclable electronics. The composite exhibits sinter-free characteristics, allowing for printing on various substrates, including heat-sensitive materials. Unlike traditional conductive inks, the Ga-CB-SIS composite, composed of gallium, carbon black, and styrene isoprene block copolymers, combines electrical conductivity, stretchability, and digital printability. By introducing carbon black as a filler material, the composite achieves promising electromechanical behavior, making it suitable for low-resistance heaters, batteries, and electrical interconnects. The fabrication process involves a simultaneous mixing and ball-milling technique, resulting in a homogeneous composition with a CB/Ga ratio of 4.3%. The Ga-CB-SIS composite showcases remarkable adaptability for digital printing on various substrates. Its self-healing property and efficient recycling technique using a deep eutectic solvent contribute to an environmentally conscious approach to electronic waste, with a high gallium recovery efficiency of ∼98%. The study's innovation extends to applications, presenting a fully digitally printed stretchable Ga-CB-SIS battery integrated with strain sensors and heaters, representing a significant leap in LM-based composites. This multifunctional and sustainable Ga-CB-SIS composite emerges as a key player in the future of wearable electronics, offering integrated circuits with sensing, heating, and energy storage elements.

2.
Soft Matter ; 18(44): 8486-8503, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36321471

RESUMEN

Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.


Asunto(s)
Hidrogeles , Silicatos , Hidrogeles/química , Conductividad Eléctrica , Silicatos/química , Polímeros/química
3.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683726

RESUMEN

Magnetite nanoparticles were synthesized by the co-precipitation method with and without the assistance of an additive, namely, gelatin, agar-agar or pectin, using eco-friendly conditions and materials embodying a green synthesis process. X-ray diffraction and transmission electron microscopy were used to analyze the structure and morphology of the nanoparticles. Magnetic properties were investigated by SQUID magnetometry and 57Fe Mössbauer spectroscopy. The results show that the presence of the additives implies a higher reproducibility of the morphological magnetic nanoparticle characteristics compared with synthesis without any additive, with small differences associated with different additives. To assess their potential for magnetic hyperthermia, water-based suspensions of these nanoparticles were prepared with and without citric acid. The stable solutions obtained were studied for their structural, magnetic and heating efficiency properties. The results indicate that the best additive for the stabilization of a water-based emulsion and better heating efficiency is pectin or a combination of pectin and agar-agar, attaining an intrinsic loss power of 3.6 nWg-1.

4.
Adv Mater ; 34(31): e2203266, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697348

RESUMEN

E-waste is rapidly turning into another man-made disaster. It is proposed that a paradigm shift toward a more sustainable future can be made through soft-matter electronics that are resilient, repairable if damaged, and recyclable (3R), provided that they achieve the same level of maturity as industrial electronics. This includes high-resolution patterning, multilayer implementation, microchip integration, and automated fabrication. Herein, a novel architecture of materials and methods for microchip-integrated condensed soft-matter 3R electronics is demonstrated. The 3R function is enabled by a biphasic liquid metal-based composite, a block copolymer with nonpermanent physical crosslinks, and an electrochemical technique for material recycling. In addition, an autonomous laser-patterning method for scalable circuit patterning with an exceptional resolution of <30 µm in seconds is developed. The phase-shifting property of the BCPs is utilized for vapor-assisted "soldering" circuit repairing and recycling. The process is performed entirely at room temperature, thereby opening the door for a wide range of heat-sensitive and biodegradable polymers for the next generation of green electronics. The implementation and recycling of sophisticated skin-mounted patches with embedded sensors, electrodes, antennas, and microchips that build a digital fingerprint of the human electrophysiological signals is demonstrated by collecting mechanical, electrical, optical, and thermal data from the epidermis.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrodos , Electrónica , Humanos , Metales , Polímeros/química
5.
Braz. j. infect. dis ; 18(6): 600-608, Nov-Dec/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-730425

RESUMEN

Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette–Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.


Asunto(s)
Humanos , Técnicas Biosensibles/métodos , Mycobacterium bovis/aislamiento & purificación , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Compuestos de Cadmio , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Oro , Nanopartículas del Metal , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Telurio
6.
Braz J Infect Dis ; 18(6): 600-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181404

RESUMEN

Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.


Asunto(s)
Técnicas Biosensibles/métodos , Mycobacterium bovis/aislamiento & purificación , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Compuestos de Cadmio , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Oro , Humanos , Nanopartículas del Metal , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Telurio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...