Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Prenat Diagn ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776084

RESUMEN

BACKGROUND: Artificial intelligence (AI) has the potential to improve prenatal detection of congenital heart disease. We analysed the performance of the current national screening programme in detecting hypoplastic left heart syndrome (HLHS) to compare with our own AI model. METHODS: Current screening programme performance was calculated from local and national sources. AI models were trained using four-chamber ultrasound views of the fetal heart, using a ResNet classifier. RESULTS: Estimated current fetal screening programme sensitivity and specificity for HLHS were 94.3% and 99.985%, respectively. Depending on calibration, AI models to detect HLHS were either highly sensitive (sensitivity 100%, specificity 94.0%) or highly specific (sensitivity 93.3%, specificity 100%). Our analysis suggests that our highly sensitive model would generate 45,134 screen positive results for a gain of 14 additional HLHS cases. Our highly specific model would be associated with two fewer detected HLHS cases, and 118 fewer false positives. CONCLUSION: If used independently, our AI model performance is slightly worse than the performance level of the current screening programme in detecting HLHS, and this performance is likely to deteriorate further when used prospectively. This demonstrates that collaboration between humans and AI will be key for effective future clinical use.

2.
PLoS Biol ; 18(11): e3000976, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226978

RESUMEN

Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Feto/anatomía & histología , Feto/metabolismo , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Femenino , Madurez de los Órganos Fetales/genética , Feto/diagnóstico por imagen , Neuroimagen Funcional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Imágenes de Resonancia Magnética Multiparamétrica , Neurogénesis/genética , Embarazo , Nacimiento Prematuro , Análisis Espacio-Temporal
3.
Neuroimage ; 200: 391-404, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31226495

RESUMEN

We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Teóricos , Neuroimagen/métodos , Adulto , Imagen de Difusión por Resonancia Magnética/normas , Feto/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Recién Nacido , Neuroimagen/normas
4.
IEEE Trans Med Imaging ; 37(8): 1737-1750, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29994453

RESUMEN

Limited capture range, and the requirement to provide high quality initialization for optimization-based 2-D/3-D image registration methods, can significantly degrade the performance of 3-D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, which contain significant subject motion, such as fetal in-utero imaging, complicate the 3-D image and volume reconstruction process. In this paper, we present a learning-based image registration method capable of predicting 3-D rigid transformations of arbitrarily oriented 2-D image slices, with respect to a learned canonical atlas co-ordinate system. Only image slice intensity information is used to perform registration and canonical alignment, no spatial transform initialization is required. To find image transformations, we utilize a convolutional neural network architecture to learn the regression function capable of mapping 2-D image slices to a 3-D canonical atlas space. We extensively evaluate the effectiveness of our approach quantitatively on simulated magnetic resonance imaging (MRI), fetal brain imagery with synthetic motion and further demonstrate qualitative results on real fetal MRI data where our method is integrated into a full reconstruction and motion compensation pipeline. Our learning based registration achieves an average spatial prediction error of 7 mm on simulated data and produces qualitatively improved reconstructions for heavily moving fetuses with gestational ages of approximately 20 weeks. Our model provides a general and computationally efficient solution to the 2-D/3-D registration initialization problem and is suitable for real-time scenarios.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Femenino , Feto/diagnóstico por imagen , Humanos , Aprendizaje Automático , Movimiento , Embarazo
5.
Prenat Diagn ; 36(10): 916-925, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27521762

RESUMEN

OBJECTIVES: Fetal cardiovascular magnetic resonance imaging (MRI) offers a potential alternative to echocardiography, although in practice, its use has been limited. We sought to explore the need for additional imaging in a tertiary fetal cardiology unit and the usefulness of standard MRI sequences. METHODS: Cases where the diagnosis was not fully resolved using echocardiography were referred for MRI. Following a three-plane localiser, fetal movement was assessed with a balanced steady-state free precession (bSSFP) cine. Single-shot fast spin echo and bSSFP sequences were used for diagnostic imaging. RESULTS: Twenty-two fetal cardiac MRIs were performed over 12 months, at mean gestation of 32 weeks (26-38 weeks). The majority of referrals were for suspected vascular abnormalities (17/22), particularly involving the aortic arch (n = 10) and pulmonary vessels (n = 4). Single-shot fast spin echo sequences produced 'black-blood' images, useful for examining the extracardiac vasculature in these cases. BSSFP sequences were more useful for intracardiac structures. Real-time SSFP allowed for dynamic assessment of structures such as cardiac masses, with enhancement patterns also allowing for tissue characterisation in these cases. CONCLUSIONS: Fetal vascular abnormalities such as coarctation can be difficult to diagnose by using ultrasound. Fetal MRI may have an adjunctive role in the evaluation of the extracardiac vascular anatomy and tissue characterisation. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Asunto(s)
Ecocardiografía/métodos , Corazón Fetal/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Aorta Torácica/anomalías , Aorta Torácica/diagnóstico por imagen , Coartación Aórtica/diagnóstico por imagen , Divertículo/diagnóstico por imagen , Femenino , Corazón Fetal/anomalías , Defectos del Tabique Interventricular/diagnóstico por imagen , Humanos , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Diagnóstico Prenatal , Arteria Pulmonar/anomalías , Arteria Pulmonar/diagnóstico por imagen , Venas Pulmonares/anomalías , Venas Pulmonares/diagnóstico por imagen , Ultrasonografía Prenatal
6.
PLoS One ; 8(4): e59990, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565180

RESUMEN

We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.81±0.02 using label propagation and fusion for the preterm population, and 0.81±0.02 using the single registration of a MPNA for the term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for neonates and the developing brain.


Asunto(s)
Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen , Algoritmos , Encéfalo/anatomía & histología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Reproducibilidad de los Resultados
7.
Ultrasound Med Biol ; 39(5): 903-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23473537

RESUMEN

This article examines how the acoustic and stability characteristics of single lipid-shelled microbubbles (MBs) change as a result of adherence to a target surface. For individual adherent and non-adherent MBs, the backscattered echo from a narrowband 2-MHz, 90-kPa peak negative pressure interrogation pulse was obtained. These measurements were made in conjunction with an increasing amplitude broadband disruption pulse. It was found that, for the given driving frequency, adherence had little effect on the fundamental response of an MB. Examination of the second harmonic response indicated an increase of the resonance frequency for an adherent MB: resonance radius increasing of 0.3 ± 0.1 µm for an adherent MB. MB stability was seen to be closely related to MB resonance and gave further evidence of a change in the resonance frequency due to adherence.


Asunto(s)
Medios de Contraste/química , Lípidos/química , Ultrasonografía/métodos , Estabilidad de Medicamentos , Ensayo de Materiales , Microburbujas
8.
Ultrasound Med Biol ; 38(9): 1599-607, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22763010

RESUMEN

Gas microbubbles are used routinely to improve contrast in medical diagnostic imaging. The emerging fields of microbubble-enhanced quantitative imaging and microbubble-enhanced drug delivery have further enhanced the drive toward microbubble characterization and design techniques. The quest to improve efficiency, particularly in the field of drug delivery, presents a requirement to develop methods to manipulate microbubble properties to improve utility. This article presents an investigation in to the feasibility of influencing albumin shelled microbubble properties through the variation of albumin availability during fabrication. Microbubbles were fabricated from albumin suspensions of varying concentration before thorough physical and acoustic characterization. Microbubbles with shells fabricated from a 2% albumin suspension had a greater scattering to attenuation ratio (STAR) than 10% albumin preparations (4.4% and 2.2%, respectively) and approximately double the nonlinear STAR (from 0.7% to 1.5%). The 2% microbubbles also exhibited greater (up to 40%), more violent radial oscillations during high speed imaging than 5% and 10% preparations. The results show that microbubble characteristics can be simply manipulated in the lab and indicate that for a given application this may provide the opportunity to further enhance favorable characteristics.


Asunto(s)
Albúminas/química , Medios de Contraste/síntesis química , Sistemas de Liberación de Medicamentos , Microburbujas , Acústica , Estudios de Factibilidad , Suspensiones/química
9.
Neuroimage ; 62(3): 1499-509, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22713673

RESUMEN

Premature birth is a major and growing problem. Investigations into neuroanatomical correlates and consequences of preterm birth are hampered by complex neonatal brain anatomy and unavailability of atlases and protocols covering the whole brain. We developed delineation protocols for the manual segmentation of cerebral magnetic resonance (MR) images from newborn infants into 50 regions with comprehensive coverage of the brain. We then segmented MR scans from 15 infants born preterm at median 29, range 26-35, weeks postmenstrual age and scanned at term-corrected age, and five term-born infants born at median 41, range 39-45, weeks postmenstrual age. Total and regional brain volumes were estimated in each infant, and regional volumes expressed as a fraction of total brain volume. Total brain volumes were higher with greater age at birth and at time of scan, but once corrected for age at scan there was no difference between preterm and term infants. Fractional age-corrected regional volumes were bigger unilaterally in terms in middle and inferior temporal gyri, anterior temporal lobe, fusiform gyrus and posterior cingulate gyrus. Fractional age-corrected regional volumes were larger in preterms bilaterally in hippocampus, amygdala, thalamus and lateral ventricles, left superior temporal gyrus and right caudate nucleus. These differences were not significant after correcting for multiple hypothesis testing, but suggest subtle differences between preterms and term-borns accessible to regional analysis. Detailed illustrated protocols are made available in the Appendix.


Asunto(s)
Atlas como Asunto , Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Recién Nacido , Recien Nacido Prematuro , Anatomía Artística , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
10.
Ultrasound Med Biol ; 38(6): 1067-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22502878

RESUMEN

Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture.


Asunto(s)
Albúminas/farmacología , Terapia Genética/métodos , Glucosa/farmacología , Microburbujas , Miocardio , Sonicación/métodos , Transfección/métodos , Análisis de Varianza , Animales , Área Bajo la Curva , Femenino , Humanos , Luciferasas/genética , Ratones , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA