Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794308

RESUMEN

Polymeric micelles have been extensively studied because of their ability to transfer biologically active agents, such as drugs and nucleic acids [...].

2.
Pharmaceutics ; 16(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399223

RESUMEN

Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.

3.
Pharmaceutics ; 15(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37111633

RESUMEN

In this work, mixed polymeric micelles (MPMs) based on a cationic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA29-b-PCL70-b-PDMAEMA29) and a non-ionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO99-b-PPO67-b-PEO99) triblock copolymers, blended at different molar ratios, were developed. The key physicochemical parameters of MPMs, including size, size distribution, and critical micellar concentration (CMC), were evaluated. The resulting MPMs are nanoscopic with a hydrodynamic diameter of around 35 nm, and the ζ-potential and CMC values strongly depend on the MPM's composition. Ciprofloxacin (CF) was solubilized by the micelles via hydrophobic interaction with the micellar core and electrostatic interaction between the polycationic blocks, and the drug localized it, to some extent, in the micellar corona. The effect of a polymer-to-drug mass ratio on the drug-loading content (DLC) and encapsulation efficiency (EE) of MPMs was assessed. MPMs prepared at a polymer-to-drug mass ratio of 10:1 exhibited very high EE and a prolonged release profile. All micellar systems demonstrated their capability to detach pre-formed Gram-positive and Gram-negative bacterial biofilms and significantly reduced their biomass. The metabolic activity of the biofilm was strongly suppressed by the CF-loaded MPMs indicating the successful drug delivery and release. The cytotoxicity of empty and CF-loaded MPMs was evaluated. The test reveals composition-dependent cell viability without cell destruction or morphological signs of cell death.

4.
Polymers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850178

RESUMEN

The interactions of two star polymers based on poly (2-(dimethylamino)ethyl methacrylate) with different types of nucleic acids are investigated. The star polymers differ only in their functionality to bear protonable amino or permanently charged quaternary ammonium groups, while DNAs of different molar masses, lengths and topologies are used. The main physicochemical parameters of the resulting polyplexes are determined. The influence of the polymer' functionality and length and topology of the DNA on the structure and properties of the polyelectrolyte complexes is established. The quaternized polymer is characterized by a high binding affinity to DNA and formed strongly positively charged, compact and tight polyplexes. The parent, non-quaternized polymer exhibits an enhanced buffering capacity and weakened polymer/DNA interactions, particularly upon the addition of NaCl, resulting in the formation of less compact and tight polyplexes. The cytotoxic evaluation of the systems indicates that they are sparing with respect to the cell lines studied including osteosarcoma, osteoblast and human adipose-derived mesenchymal stem cells and exhibit good biocompatibility. Transfection experiments reveal that the non-quaternized polymer is effective at transferring DNA into cells, which is attributed to its high buffering capacity, facilitating the endo-lysosomal escape of the polyplex, the loose structure of the latter one and weakened polymer/DNA interactions, benefitting the DNA release.

5.
Soft Matter ; 18(29): 5426-5434, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819021

RESUMEN

A feasible one pot synthesis of hollow spherical nucleic acids (SNAs) using phospholipid liposomes is reported. These constructs are synthesized in a chemically straightforward process involving formation of unilamellar liposomes, coating the liposomes with a thin cross-linked polymeric layer, and grafting the latter with short (about 20 bases) DNA oligonucleotide strands. They consist of vesicular cores, composed of readily available phospholipid (1,2-dipalmitoyl-sn-glycero-phosphocholine), whereas the strands are deliberately arranged on the surface of the vesicular entities. The initial vesicular structure and morphology are preserved during the coating and grafting reactions. The novel hollow/vesicular SNAs are characterized with a hydrodynamic radius and radius of gyration of 78.3 and 88.5 nm, respectively, and moderately negative (-14.2 mV) ζ potential. They carry thousands (5868) of oligonucleotide strands per vesicle, which are not strongly radially oriented and adopt an unextended conformation as anticipated from the smaller value of the grafting density compared to the critical grafting density at the transition to brush conformation. The constructs are practically devoid of toxicity and exhibit high binding affinity to complementary nucleic acids. Unlike any other nucleic acid structural motif, they cross the cell membrane and enter cells without the need of transfection agents.


Asunto(s)
Ácidos Nucleicos , Fosfolípidos , Liposomas/química , Ácidos Nucleicos/química , Oligonucleótidos , Fosfolípidos/química , Polímeros/química , Liposomas Unilamelares
6.
Biomacromolecules ; 22(2): 971-983, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33371665

RESUMEN

Novel N-substituted polyacrylamides bearing a cycle with two tertiary amines, poly(4-methyl-piperazin-1-yl)-propenone (PMPP) and its block copolymers with polylactide (PMPP-b-PLA), are synthesized and characterized. The homopolymers are water-soluble, whereas the block copolymers self-assemble in aqueous solution into a small size (Rh around 30 nm), are narrowly distributed, and exhibit core-shell micelles with good colloidal stability. Both the homopolymers and copolymer micelles are positively charged (ζ-potentials in the 13.8-17.6 mV range), which are employed for formation of electrostatic complexes with oppositely charged DNA. Complexes (polyplexes, micelleplexes, and spherical nucleic acidlike structures) in a wide range of N/P (amino to phosphate groups) ratios are prepared with short (115 bp) and long (2000 bp) DNA. The behavior and physicochemical properties of the resulting nanocarriers of DNA are strongly dependent on the polymer/polymer micelles' characteristics and the DNA chain length. All systems exhibit low cytotoxicity and good cellular uptake ability and show promise for gene delivery and regulation.


Asunto(s)
Micelas , Polímeros , Resinas Acrílicas , Cationes , Polietilenglicoles
7.
Macromol Biosci ; 21(2): e2000352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33283423

RESUMEN

Physicochemical characteristics and biological performance of polyplexes based on two identical copolymers bearing tertiary amino or quaternary ammonium groups are evaluated and compared. Poly(2-(dimethylamino)ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) block copolymer (PDMAEMA-b-POEGMA) is synthesized by reversible addition fragmentation chain transfer polymerization. The tertiary amines of PDMAEMA are converted to quaternary ammonium groups by quaternization with methyl iodide. The two copolymers spontaneously formed well-defined polyplexes with DNA. The size, zeta potential, molar mass, aggregation number, and morphology of the polyplex particles are determined. The parent PDMAEMA-b-POEGMA exhibits larger buffering capacity, whereas the corresponding quaternized copolymer (QPDMAEMA-b-POEGMA) displays stronger binding affinity to DNA, yielding invariably larger in size and molar mass particles bearing greater number of DNA molecules per particle. Experiments revealed that QPDMAEMA-b-POEGMA is more effective in transfecting pEGFP-N1 than the parent copolymer, attributed to the larger size, molar mass, and DNA cargo, as well as to the effective cellular traffic, which dominated over the enhanced ability for endo-lysosomal escape of PDMAEMA-b-POEGMA.


Asunto(s)
Aminas/química , Fenómenos Químicos , Técnicas de Transferencia de Gen , Vectores Genéticos/metabolismo , Metacrilatos/química , Nylons/química , Tampones (Química) , Muerte Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Hidrodinámica , Concentración 50 Inhibidora , Tamaño de la Partícula , Polietilenglicoles/química , Electricidad Estática , Ultracentrifugación
8.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171983

RESUMEN

Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx-PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.

9.
Biofouling ; 36(6): 679-695, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32741293

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen often associated with biofilm infections. This study evaluated the capacity for biofilm destruction of a novel combination of cationic polymer micelles formed from poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA-PCL-PDMAEMA) triblock copolymer either alone, or loaded with silver nanoparticles (M_AgNPs). Pre-formed P. aeruginosa biofilms were incubated with either blank micelles, AgNO3, or M_AgNPs. Biofilm biomass (crystal violet assay), metabolic activity (Alamar blue reduction), structure (SEM) and viability (CLSM after Live/Dead staining, or plating for CFU) were checked. The results showed that the micelles alone loosened the biofilm matrix, and caused some alterations in the bacterial surface. AgNO3 killed the bacteria in situ leaving dead biofilm bacteria on the surface. M_AgNPs combined the two types of activities causing significant biofilm reduction, and alteration and death of biofilm bacteria. Therefore, the applied PDMAEMA-based micelles appear to be a successful candidate for the treatment of P. aeruginosa biofilm infections.


Asunto(s)
Biopelículas , Nanopartículas del Metal , Pseudomonas aeruginosa , Antibacterianos/farmacología , Micelas , Polímeros , Plata/farmacología
10.
Soft Matter ; 16(1): 191-199, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31774098

RESUMEN

A feasible one-pot approach for constructing oligonucleotide-grafted polymeric nanoparticles is reported. The approach involves formation of mesoglobules from a thermoresponsive polymer, coating of the mesoglobules with a cross-linked polymeric shell, and grafting the latter with oligonucleotide strands. Dynamic and static light scattering are used to parameterize the novel constructs. They are relatively large structures with hydrodynamic radii and molar masses reaching 200 nm and 150.0 × 106 g mol-1, respectively. The oligonucleotide-grafted polymeric nanoparticles are of spherical morphology and moderately negative (-12.4 to -19.1 mV) ζ potential as revealed by AFM, TEM, and electrophoretic light scattering. In accordance with their large size, they are found to carry thousands of oligonucleotide strands per particle. The novel constructs are thermoresponsive. They undergo reversible collapse upon heating and swelling upon cooling, which is associated with changes in the grafting density and, hence, the conformation of the oligonucleotide strands from unextended at room temperature to a more extended one at elevated temperatures. The versatility of the approach is demonstrated by varying the type of the cross-linked shell and content of the oligonucleotide strands and, hence, the grafting density. Appropriate diversification and modifications are suggested as well.


Asunto(s)
Nanopartículas/química , Oligonucleótidos/química , Polímeros/química , Tamaño de la Partícula , Temperatura
11.
Macromol Biosci ; 18(4): e1700349, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488321

RESUMEN

The present contribution is focused on feasibility of using comb-like copolymers of polyethylenimine with poly(2-ethyl-2-oxazoline) (LPEI-comb-PEtOx) with varying grafting densities and degrees of polymerization of PEI and PEtOx to deliver DNA molecules into cells. The copolymers form small and well-defined particles at elevated temperatures, which are used as platforms for binding and condensing DNA. The electrostatic interactions between particles and DNA result in formation of sub-100 nm polyplex particles of narrow size distribution and different morphology and structure. The investigated gene delivery systems exhibit transfection efficiency dependent on the copolymer chain topology, shape of the polyplex particles, and internalization pathway. Flow cytometry shows enhanced transfection efficiency of the polyplexes with elongated and ellipsoidal morphology. The preliminary biocompatibility study on a panel of human cell lines shows that pure copolymers and polyplexes thereof are practically devoid of cytotoxicity.


Asunto(s)
ADN/efectos de los fármacos , Técnicas de Transferencia de Gen , Poliaminas/química , Polietileneimina/química , Proliferación Celular/efectos de los fármacos , ADN/química , Poliaminas/farmacología , Polietileneimina/farmacología , Polimerizacion , Polímeros/química , Polímeros/farmacología , Electricidad Estática , Transfección
12.
Eng Life Sci ; 18(12): 943-948, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32624888

RESUMEN

Contamination of surfaces in hospitals and food industry by bacterial biofilms is a serious health risk. Of concern is their resistance to routine antibacterials and disinfectants. This requires the development of novel approaches to biofilm detachment. The study evaluates the effectiveness of cationic polymer micelles (CPMs) against pre-formed biofilms. CPMs based on different polycations were used. The hydrodynamic radius of the particles ranged from 16 to 360 nm. Biofilms of Escherichia coli 420, Pseudomonas aeruginosa PAO1, Staphylococcus aureus 29213 and Bacillus subtilis 168 were cultivated for 24 h then the pre-formed biofilms were treated with the CPMs for 2, 4 or 6 h. Biofilm biomass was evaluated by the crystal violet assay, and live/dead fluorescence test was applied for bacterial viability. The ability of CPMs to interact with pre-formed biofilms of the model strains was evaluated. We observed that the most effective CPMs were those based on poly(2-(dimethylamino)ethyl methacrylate) copolymers which reduced the biofilm biomass three- to four-fold compared with the treatment of the biofilm with water. Significantly reduced vitality of the bacteria in the biofilms was registered by the live/dead stain. The results indicate the applicability of the CPMs for disinfection of biofilm-contaminated surfaces and the treatment of wounds.

13.
Biomacromolecules ; 17(11): 3580-3590, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27723983

RESUMEN

Random copolymers of n-propyl-2-oxazoline and ethylenimine (PPrOx-PEI) were prepared by partial acidic hydrolysis of poly(n-propyl-2-oxazoline) (PPrOx). Dynamic and electrophoretic light scattering and diffusion-ordered NMR spectroscopy were utilized to investigate aqueous solution properties of the copolymers. Above a specific cloud point temperature, well-defined nanoparticles were formed. The latter consisted of a core composed predominantly of PPrOx and a thin positively charged shell from PEI moieties that mediated formation of polyplexes with DNA. The polyplexes were prepared at 65 °C at varying N/P (amine-to-phosphate groups) ratios. They underwent structural changes upon temperature variations 65-25-37 °C depending on N/P. At N/P < 2, the polyplex particles underwent minor changes because of formation of a surface layer of DNA that acted as a barrier and prevented swelling and disintegration of the initial particles. Dramatic rearrangements at N/P ≥ 2 resulting in large swollen microgel particles were overcome by coating of the polyplex particles with a cross-linked polymeric shell. The shell retained the colloidal stability and preserved the physicochemical parameters of the initial polyplex particles while it reduced the high surface potential values. Progressive loss of cytotoxicity upon complexation with DNA and coating of polyplex particles was displayed.


Asunto(s)
ADN/química , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Oxazolona/análogos & derivados , ADN/genética , Vectores Genéticos/genética , Humanos , Hidrólisis , Micelas , Nanopartículas/química , Oxazolona/síntesis química , Oxazolona/química , Polietilenglicoles/química , Polietileneimina/síntesis química , Polietileneimina/química , Soluciones/química , Agua/química
14.
Biomacromolecules ; 17(8): 2691-700, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27409457

RESUMEN

This study describes a novel approach to polymeric nanocarriers of the therapeutic peptide met-enkephalin based on the aggregation of thermoresponsive polymers. Thermoresponsive bioconjugate poly((di(ethylene glycol) monomethyl ether methacrylate)-ran-(oligo(ethylene glycol) monomethyl ether methacrylate) is synthesized by AGET ATRP using modified met-enkephalin as a macroinitiator. The abrupt heating of bioconjugate water solution leads to the self-assembly of bioconjugate chains and the formation of mesoglobules of controlled sizes. Mesoglobules formed by bioconjugates are stabilized by coating with cross-linked two-layer shell via nucleated radical polymerization of N-isopropylacrylamide using a degradable cross-linker. The targeting peptide RGD, containing the fluorescence marker carboxyfluorescein, is linked to a nanocarrier during the formation of the outer shell layer. In the presence of glutathione, the whole shell is completely degradable and the met-enkephalin conjugate is released. It is anticipated that precisely engineered nanoparticles protecting their cargo will emerge as the next-generation platform for cancer therapy and many other biomedical applications.


Asunto(s)
Portadores de Fármacos/química , Encefalina Metionina/química , Nanopartículas/química , Oligopéptidos/química , Polímeros/química , Polimerizacion , Propiedades de Superficie
15.
J Phys Chem B ; 120(9): 2586-95, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26884321

RESUMEN

In this work we focus on the use of novel homo and block copolymers based on poly(vinyl benzyl trimethylammonium chloride) as gene delivery vectors. The homopolymers and block copolymers were synthesized by RAFT polymerization schemes and molecularly characterized. DNA/polymer complexes (polyplexes) in a wide range of N/P (amino-to-phosphate groups) ratios were prepared. The ability of the novel polymers to form complexes with linear DNA was investigated by light scattering, zeta potential, and ethidium bromide fluorescence quenching measurements. The resulting polyplexes were in the size range of 80-300 nm and their surface potential changed from negative to positive depending on the N/P ratio. The stability of polyplexes was monitored by changes in their hydrodynamic parameters in the presence of salt. The novel vector systems were visualized by transmission electron microscopy. The influence of factors such as molar mass, content, and chemical structure of the polycationic moieties as well as presence of a hydrophilic poly[oligo(ethylene glycol) methacrylate] block on the structure and stability of the polyplexes, kinetics of their formation, and effectiveness of the (co)polymers to shrink and pack DNA was discussed.


Asunto(s)
ADN/química , Polímeros/química , Poliestirenos/química , Compuestos de Amonio Cuaternario/química , Fluorescencia , Microscopía Electrónica de Transmisión
16.
Biomacromolecules ; 15(12): 4377-95, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25320910

RESUMEN

A novel approach for the preparation of nano- and microcapsules in aqueous solutions by using thermoresponsive polymer (TRP) templates (mesoglobules) is described. The method comprised three steps: formation of mesoglobules, coating the templates by seeded radical copolymerization, followed by core dissolution and core removal upon cooling. When mesoglobule entraps biomacromolecules during the process of their formation, it makes it possible to load a controlled amount of bioactive compounds without covalent attachment. Special attention is paid to the mesoglobule dissolution upon cooling, as well as their loading efficiency. Details on the outer shell formation and the possibilities for targeting ligands incorporation and control of the shell porosity are discussed. Finally, the seeded radical copolymerization was used for covering DNA complexes with cationic copolymers bearing TRP blocks. This Review is an attempt to convince researchers of the promising perspectives for using mesoglobules as potential reservoirs, carriers, and transferring agents for biologically active substances.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , Polímeros/química , Cápsulas/química , ADN , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...