Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38535651

RESUMEN

Metal-organic frameworks (MOFs) are porous materials assembled using metal and organic linkers, showing a high specific surface area and a tunable pore size. Large portions of metal open sites in MOFs can be exposed to electrolyte ions, meaning they have high potential to be used as electrode materials in energy storage devices such as supercapacitors. Also, they can be easily converted into porous metal oxides by heat treatment. In this study, we obtained high energy storage performance by preparing electrode materials through applying heat treatment to manganese MOFs (Mn-MOFs) under air. The chemical and structural properties of synthesized and thermally treated Mn-MOFs were measured by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The surface area and porosity were investigated by nitrogen adsorption/desorption isotherms. The electrochemical properties were studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) using a three-electrode cell. It was found that Mn-MOF electrodes that underwent heat treatment at 400 °C under air consisted of Mn2O3 with high specific surface area and porosity. They also showed a superior specific capacitance of 214.0 F g-1 and an energy density value of 29.7 Wh kg-1 (at 0.1 A g-1) compared to non-treated Mn-MOFs.

2.
Molecules ; 29(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542976

RESUMEN

Redox mediators comprising I-, Co3+, and Ti3C2Tx MXene were applied to dye-sensitized solar cells (DSCs). In the as-prepared DSCs (I-DSCs), wherein hole conduction occurred via the redox reaction of I-/I3- ions, the power conversion efficiency (PCE) was not altered by the addition of Ti3C2Tx MXene. The I-DSCs were exposed to light to produce Co2+/Co3+-based cells (Co-DSCs), wherein the holes were transferred via the redox reaction of Co2+/Co3+ ions. A PCE of 9.01% was achieved in a Co-DSC with Ti3C2Tx MXene (Ti3C2Tx-Co-DSC), which indicated an improvement from the PCE of a bare Co-DSC without Ti3C2Tx MXene (7.27%). It was also found that the presence of Ti3C2Tx MXene in the redox mediator increased the hole collection, dye regeneration, and electron injection efficiencies of the Ti3C2Tx-Co-DSC, leading to an improvement in both the short-circuit current and the PCE when compared with those of the bare Co-DSC without MXene.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159717

RESUMEN

ZnO nanorods were formed by chemical bath deposition on fluorine-doped tin oxide (FTO) glass and the photovoltaic performance of ZnO-based dye-sensitized solar cells (DSCs) was investigated. A DSC with 8 h-grown ZnO nanorods showed a higher power conversion efficiency (PCE) than devices with 4, 6, and 10 h-grown ones. Further improvement in PCE was achieved in a cell with a silver-ion-deposited ZnO/FTO electrode. By deposition of Ag+ on the surface of the 8 h-grown ZnO nanorods, the dye-loading amount increased by approximately 210%, compared to that of pristine ZnO nanorods, resulting in a 1.8-times higher PCE. A DSC with the pristine ZnO/FTO electrode showed a PCE of 0.629%, while in a device with the silver-ion-deposited ZnO/FTO, the PCE increased to 1.138%. In addition, interfacial resistance at the ZnO/dye/electrolyte was reduced to approximately 170 Ω from 460 Ω for the control cell with the pristine ZnO/FTO. We attributed the higher dye-loading amount in the silver-ion-deposited ZnO/FTO to the electrostatic attraction between the positively charged ZnO and carboxylate anions (-COO-) of the N719 dyes.

4.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202759

RESUMEN

The use of porous three-dimensional (3D) composite scaffolds has attracted great attention in bone tissue engineering applications because they closely simulate the major features of the natural extracellular matrix (ECM) of bone. This study aimed to prepare biomimetic composite scaffolds via a simple 3D printing of gelatin/hyaluronic acid (HA)/hydroxyapatite (HAp) and subsequent biomineralization for improved bone tissue regeneration. The resulting scaffolds exhibited uniform structure and homogeneous pore distribution. In addition, the microstructures of the composite scaffolds showed an ECM-mimetic structure with a wrinkled internal surface and a porous hierarchical architecture. The results of bioactivity assays proved that the morphological characteristics and biomineralization of the composite scaffolds influenced cell proliferation and osteogenic differentiation. In particular, the biomineralized gelatin/HA/HAp composite scaffolds with double-layer staggered orthogonal (GEHA20-ZZS) and double-layer alternative structure (GEHA20-45S) showed higher bioactivity than other scaffolds. According to these results, biomineralization has a great influence on the biological activity of cells. Hence, the biomineralized composite scaffolds can be used as new bone scaffolds in bone regeneration.


Asunto(s)
Regeneración Ósea , Durapatita , Gelatina , Ácido Hialurónico , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Biomineralización , Diferenciación Celular , Fenómenos Químicos , Durapatita/química , Módulo de Elasticidad , Gelatina/química , Análisis Espectral , Andamios del Tejido/química , Viscosidad
5.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333855

RESUMEN

The leakage and volatilization of liquid electrolytes limit the commercialization of dye-sensitized solar cells (DSCs). As solid-state (ss) hole-transporting materials, free from leakage and volatilization, biscarbazole-based polymers with different molecular weights (PBCzA-H (21,200 g/mol) and PBCzA-L (2450 g/mol)) were applied in combination with additives to produce ssDSCs. An ssDSC with PBCzA-H showed a better short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (FF) than a device with PBCzA-L, resulting in 38% higher conversion efficiency. Compared to the PBCzA-L, the PBCzA-H with a higher molecular weight showed faster hole mobility and larger conductivity, leading to elevations in Jsc via rapid hole transport, Voc via rapid hole extraction, and FF via lowered series and elevated shunt resistances. Thus, it is believed that PBCzA-H is a useful candidate for replacing liquid electrolytes.

6.
Molecules ; 25(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224956

RESUMEN

By simple soaking titanium dioxide (TiO2) films in an aqueous Na2S solution, we could prepare surface-modified photoanodes for application to dye-sensitized solar cells (DSSCs). An improvement in both the open-circuit voltage (Voc) and the fill factor (FF) was observed in the DSSC with the 5 min-soaked photoanode, compared with those of the control cell without any modification. The UV-visible absorbance spectra, UPS valence band spectra, and dark current measurements revealed that the Na2S modification led to the formation of anions on the TiO2 surface, and thereby shifted the conduction band edge of TiO2 in the negative (upward) direction, inducing an increase of 29 mV in the Voc. It was also found that the increased FF value in the surface-treated device was attributed to an elevation in the shunt resistance.


Asunto(s)
Colorantes , Energía Solar , Titanio , Algoritmos , Electricidad , Modelos Teóricos , Análisis Espectral , Sulfuros , Propiedades de Superficie
7.
Nanotechnology ; 31(21): 215404, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32032014

RESUMEN

Tailoring the chemical structures of a precursor polymer for carbon nanofibers (CNFs) produced by thermal treatment of electrospun nanofibers was studied to prepare the electrodes for electrochemical double layer capacitors (EDLCs). To improve energy storage performance of CNF electrodes, 6FDA-durene nanofibers were crosslinked by a vapor crosslinking method, and subsequently carbonized. Chemical modification via crosslinking was confirmed by FTIR spectra while the conversion of crosslinked 6FDA-durene into carbon was done by Raman spectroscopy. Electrochemical performance of these CNF electrodes was evaluated by assembling coin cells, and the CNFs derived from crosslinked 6FDA-durene nanofibers showed higher specific capacitances, energy densities and cycling stability than those from non-crosslinked ones. It was also shown that CNFs prepared using 1 min crosslinking exhibit the highest energy storage performances, a specific capacitance of 301 F g-1 (at 10 mV s-1), and the maximum energy density of 11.1 Wh kg-1 (at 0.5 A g-1) and power density of 1.8 kW kg-1 (at 6 A g-1). Surface area and porosity of CNFs, which is critical for the performance of EDLC electrodes, were studied by nitrogen adsorption/desorption measurements, and it was clearly seen that surface crosslinking of precursor polymers improved surface properties of the resultant CNFs.

8.
Nanomaterials (Basel) ; 9(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756910

RESUMEN

At an elevated temperature of 90 °C, a chemical bath deposition using an aqueous solution of Zn(NO3)2·6H2O and (CH2)6N4 resulted in the formation of both nanoflowers and microrods of ZnO on F-doped SnO2 glass with a seed layer. The nanoflowers and microrods were sensitized with dyes for application to the photoelectrodes of dye-sensitized solar cells (DSSCs). By extending the growth time of ZnO, the formation of nanoflowers was reduced and the formation of microrods favored. As the growth time was increased from 4 to 6 and then to 8 h, the open circuit voltage (Voc) values of the DSSCs were increased, whilst the short circuit current (Jsc) values varied only slightly. Changes in the dye-loading amount, dark current, and electrochemical impedance were monitored and they revealed that the increase in Voc was found to be due to a retardation of the charge recombination between photoinjected electrons and I3- ions and resulted from a reduction in the surface area of ZnO microrods. A reduced surface area decreased the dye contents adsorbed on the ZnO microrods, and thereby decreased the light harvesting efficiency (LHE). An increase in the electron collection efficiency attributed to the suppressed charge recombination counteracted the decreased LHE, resulting in comparable Jsc values regardless of the growth time.

9.
Nanomaterials (Basel) ; 9(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717229

RESUMEN

To provide adequate conditions for the regeneration of damaged bone, it is necessary to develop piezoelectric porous membranes with antioxidant and anti-inflammatory activities. In this study, composite nanofibers comprising poly(vinylidene fluoride) (PVDF) and a polyhedral oligomeric silsesquioxane⁻epigallocatechin gallate (POSS⁻EGCG) conjugate were fabricated by electrospinning methods. The resulting composite nanofibers showed three-dimensionally interconnected porous structures. Their average diameters, ranging from 936 ± 223 nm to 1094 ± 394 nm, were hardly affected by the addition of the POSS⁻EGCG conjugate. On the other hand, the piezoelectric ß-phase increased significantly from 77.4% to 88.1% after adding the POSS⁻EGCG conjugate. The mechanical strength of the composite nanofibers was ameliorated by the addition of the POSS⁻EGCG conjugate. The results of in vitro bioactivity tests exhibited that the proliferation and differentiation of osteoblasts (MC3T3-E1) on the nanofibers increased with the content of POSS⁻EGCG conjugate because of the improved piezoelectricity and antioxidant and anti-inflammatory properties of the nanofibers. All results could suggest that the PVDF composite nanofibers were effective for guided bone regeneration.

10.
J Exerc Rehabil ; 12(4): 340-5, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27656632

RESUMEN

The purpose of this study was to develop a cognitive enhancement gymnastics program for the elderly with dementia and to verify its effect. The study was conducted on 27 people with dementia being treated in a dementia day care center in Incheon city. No statistically significant differences were found in the measures Mini-Mental State Examination for Dementia Screening (MMSE-DS), Short Geriatric Depression Scale (SGDS), Seoul Activities of Daily Living (S-ADL), or rock-paper-scissors. However, the MMSE-DS and rock-paper-scissors showed improvement after 12 weeks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA