Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Mol Res ; 13(3): 7577-86, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25222258

RESUMEN

This study aimed to determine whether feeding betaine to cows elevates their production performance during summer heat stress. Thirty-two lactating Holstein cows were randomly divided into 4 groups: the control group, which received a total mixed ration (TMR), and 3 experimental groups that received TMR blended with 10 g/day (group I), 15 g/day (group II), and 20 g/day (group III) betaine for 8 weeks. Milk and blood were sampled throughout the experimental period. The average maximum and minimum air temperatures were 28.3 and 24.1°C, respectively. The average temperature-humidity index was 78.6 units. The results showed that feeding betaine to cows increased feed intake, milk yield, milk lactose, milk protein, plasma cortisol, glutathione peroxidase, superoxide dismutase, and malondialdehyde levels (P<0.05); however, it caused HSP70 levels to decrease (P<0.05). The milk performance of group II was significantly affected. These results indicate that supplementing betaine to the diet of dairy cows increases their milk performance and improves their antioxidant capacity; these processes help relieve the cow from heat stress. In conclusion, supplementing dairy cows with 15 g/day betaine generated the most positive influence on performance and productivity, and hence caused the greatest reduction in heat stress.


Asunto(s)
Alimentación Animal , Betaína , Productos Lácteos , Suplementos Dietéticos , Leche , Carácter Cuantitativo Heredable , Estrés Fisiológico , Animales , Antioxidantes/metabolismo , Temperatura Corporal , Bovinos , Clima , Frecuencia Cardíaca , Calor , Lactancia , Metaboloma , Metabolómica , Frecuencia Respiratoria , Estaciones del Año
2.
Genet Mol Res ; 13(2): 3869-75, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24938599

RESUMEN

We investigated the effect of phytosterols on rumen fermentation in vitro using gas syringes as incubators. Phytosterols were dissolved in ethyl acetate (8.3%) and added at various concentrations to the common diet in rumen fluid. In vitro gas production (GP) was recorded after 3, 6, 12, 18, and 24 h incubation. Incubation was stopped at 6, 12, and 24 h and the inoculants were then tested for pH, dry matter digestibility (DMD), microbial protein yield (MCP), lactic acid, NH3-N, and volatile fatty acids (VFAs). GP was consistently higher than the control; particularly, treatments at 12, 18, and 24 h reached extremely significant levels (P < 0.01). Compared to the control group, the pH of ruminal fluid was slightly lower after incubation, and DMD and MCP increased with increasing phytosterol level except for the content of MCP at 6 h, which changed only minimally. Lactate was significantly lower after treatment compared to the control at 12 h (P < 0.01) and 24 h (P < 0.05), while NH3-N at 12 h (P < 0.05) and 24 h (P < 0.01) after treatment decreased significantly. Acetate, propionate, butyrate, and total VFA for all treatments were higher than those of the control, particularly for butyrate at 6 h (P < 0.01). These results suggest that phytosterols modify rumen fermentation by inhibiting released harmful products and promoting the release of beneficial product, which may be useful for improving nutrient utilization and animal health.


Asunto(s)
Fermentación/efectos de los fármacos , Fitosteroles/administración & dosificación , Rumen/efectos de los fármacos , Animales , Bovinos , Dieta , Técnicas In Vitro , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA