Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Clin Med ; 9(1)2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936392

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a common pediatric psychiatric disorder, frequently treated with methylphenidate (MPH). Recently, MPH's cardiovascular safety has been questioned by observational studies describing an increased cardiovascular risk in adults and blood pressure alterations in children. We considered members of the L-arginine (Arg)/nitric oxide (NO) pathway as possible early cardiovascular risk factors in pediatric ADHD children. They include the NO metabolites, nitrite and nitrate, the NO precursor Arg, and asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor and a cardiovascular risk factor in adults. We conducted a prospective clinical trial with 42 ADHD children (aged 6-16 years) with (n = 19) and without (n = 23) MPH treatment. Age-matched children without ADHD (n = 43) served as controls. All plasma and urine metabolites were determined by gas chromatography-mass spectrometry. We observed higher plasma nitrite and lower plasma ADMA concentrations in the ADHD children. MPH-treated ADHD children had higher plasma nitrite concentrations than MPH-untreated ADHD children. As NOS activity is basally inhibited by ADMA, MPH treatment seems to have decreased the inhibitory potency of ADMA. Percentiles of systolic blood pressure were higher in MPH-treated ADHD children. The underlying mechanisms and their implications in the MPH therapy of pediatric ADHD with MPH remain to be elucidated in larger cohorts.

2.
Amino Acids ; 52(2): 225-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31541302

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) methods were developed, validated and used to measure serum spermidine (SPD) and putrescine (PUT) in 9 seropositive Helicobacter pylori (Hp +) and 18 seronegative Helicobacter pylori (Hp -) subjects (31-105 years). Homoarginine (hArg) was also measured by GC-MS. There were no statistical differences (unpaired t test) between the Hp + and Hp - subjects with respect to the serum concentrations of SPD (67.6 ± 40.3 vs. 93.7 ± 37.7 nM, P = 0.109), PUT (220 ± 139 vs. 236 ± 85 nM, P = 0.708) and hArg (1.60 ± 0.64 µM vs. 1.83 ± 0.74 µM, P = 0.554). Serum SPD and hArg concentrations correlated with each other (r = 0.426, P = 0.026, n = 27). The PUT/SPD molar ratio correlated inversely with the hArg concentration (r = - 0.406, P = 0.034, n = 27) and proteinic citrulline (r = - 0.487, P = 0.01, n = 27). These results suggest that SPD and PUT synthesis is associated with hArg formation and protein citrullination in healthy elderly subjects. The mechanisms underlying these associations and their significance remain to be elucidated.


Asunto(s)
Homoarginina/sangre , Putrescina/sangre , Espermidina/sangre , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Cromatografía de Gases y Espectrometría de Masas , Infecciones por Helicobacter/sangre , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Humanos , Masculino , Persona de Mediana Edad
3.
Amino Acids ; 52(1): 73-85, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31853708

RESUMEN

Statin-induced myopathy affects more than 10 million people worldwide. But discontinuation of statin treatment increases mortality and cardiovascular events. Recently, L-arginine:glycine amidinotransferase (AGAT) gene was associated with statin-induced myopathy in two populations, but the causal link is still unclear. AGAT is responsible for the synthesis of L-homoarginine (hArg) and guanidinoacetate (GAA). GAA is further methylated to creatine (Cr) by guanidinoacetate methyltransferase (GAMT). In cerebrovascular patients treated with statin, lower hArg and GAA plasma concentrations were found than in non-statin patients, indicating suppressed AGAT expression and/or activity (n = 272, P = 0.033 and P = 0.039, respectively). This observation suggests that statin-induced myopathy may be associated with AGAT expression and/or activity in muscle cells. To address this, we studied simvastatin-induced myopathy in AGAT- and GAMT-deficient mice. We found that simvastatin induced muscle damage and reduced AGAT expression in wildtype mice (myocyte diameter: 34.1 ± 1.3 µm vs 21.5 ± 1.3 µm, P = 0.026; AGAT expression: 1.0 ± 0.3 vs 0.48 ± 0.05, P = 0.017). Increasing AGAT expression levels of transgenic mouse models resulted in rising plasma levels of hArg and GAA (P < 0.01 and P < 0.001, respectively). Simvastatin-induced motor impairment was exacerbated in AGAT-deficient mice compared with AGAT-overexpressing GAMT-/- mice and therefore revealed an effect independent of Cr. But Cr supplementation itself improved muscle strength independent of AGAT expression (normalized grip strength: 55.8 ± 2.9% vs 72.5% ± 3.0%, P < 0.01). Homoarginine supplementation did not affect statin-induced myopathy in AGAT-deficient mice. Our results from clinical and animal studies suggest that AGAT expression/activity and its product Cr influence statin-induced myopathy independent of each other. The interplay between simvastatin treatment, AGAT expression and activity, and Cr seems to be complex. Further clinical pharmacological studies are needed to elucidate the underlying mechanism(s) and to evaluate whether supplementation with Cr, or possibly GAA, in patients under statin medication may reduce the risk of muscular side effects.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Guanidinoacetato N-Metiltransferasa/genética , Músculo Esquelético/efectos de los fármacos , Simvastatina/farmacología , Proteínas Supresoras de Tumor/genética , Animales , Arginina/metabolismo , Creatina/metabolismo , Metilasas de Modificación del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Guanidinoacetato N-Metiltransferasa/deficiencia , Homoarginina/metabolismo , Humanos , Ratones , Músculo Esquelético/metabolismo , Fenotipo , Proteínas Supresoras de Tumor/antagonistas & inhibidores
4.
Amino Acids ; 52(2): 235-245, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31776762

RESUMEN

Low L-homoarginine (hArg) concentrations in human blood and urine are associated with renal and cardiovascular morbidity and mortality, yet the underlying mechanisms and the biological activities of hArg are elusive. In humans and rats, hArg is metabolized to L-lysine. The aim of the present work was to study hArg metabolism to agmatine (Agm) and homoagmatine (hAgm) in the anesthetized rat. Using a newly developed and validated GC-MS method and a newly synthesized and structurally characterized hAgm we investigated the metabolism of i.p. administered hArg (0, 20, 220, 440 mg/kg) to hAgm and Agm in lung, kidney, liver and heart in anesthetized rats. Our study provides unequivocal evidence that hArg is metabolized to hAgm but not to Agm. Whether hAgm derived from hArg's metabolism may contribute to the pathophysiological significance of endogenous hArg and for the favoured effects of pharmacological hArg remains to be demonstrated. The biology of hArg warrants further investigations.


Asunto(s)
Agmatina/análisis , Aminobutiratos/análisis , Homoarginina/metabolismo , Agmatina/metabolismo , Aminobutiratos/metabolismo , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Homoarginina/análisis , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Amino Acids ; 51(10-12): 1485-1499, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31535220

RESUMEN

L-Arginine:glycine amidinotransferase (AGAT) is the main producer of the creatine precursor, guanidinoacetate (GAA), and L-homoarginine (hArg). We and others previously reported lower levels of circulating and urinary hArg in renal transplant recipients (RTR) compared to healthy subjects. In adults, hArg emerged as a novel risk factor for renal and cardiovascular adverse outcome. Urinary GAA was found to be lower in children and adolescents with kidney transplants compared to healthy controls. Whether GAA is also a risk factor in the renal and cardiovascular systems of adults, is not yet known. In the present study, we aimed to investigate the significance of circulating GAA and the GAA-to-hArg molar ratio (GAA/hArg) in adult RTR. We hypothesized that GAA/hArg represents a measure of the balanced state of the AGAT activity in the kidneys, and would prospectively allow assessing a potential association between GAA/hArg and long-term outcome in RTR. The median follow-up period was 5.4 years. Confounders and potential mediators of GAA/hArg associations were evaluated with multivariate linear regression analyses, and the association with all-cause and cardiovascular mortality or death-censored graft loss was studied with Cox regression analyses. The study cohort consisted of 686 stable RTR and 140 healthy kidney donors. Median plasma GAA concentration was significantly lower in the RTR compared to the kidney donors before kidney donation: 2.19 [1.77-2.70] µM vs. 2.78 [2.89-3.35] µM (P < 0.001). In cross-sectional multivariable analyses in RTR, HDL cholesterol showed the strongest association with GAA/hArg. In prospective analyses in RTR, GAA/hArg was associated with a higher risk for all-cause mortality (hazard ratio (HR): 1.35 [95% CI 1.19-1.53]) and cardiovascular mortality (HR: 1.46 [95% CI 1.24-1.73]), independent of potential confounders. GAA but not GAA/hArg was associated with death-censored graft loss in crude survival and Cox regression analyses. The association of GAA and death-censored graft loss was lost after adjustment for eGFR. Our study suggests that in the kidneys of RTR, the AGAT-catalyzed biosynthesis of GAA is decreased. That high GAA/hArg is associated with a higher risk for all-cause and cardiovascular mortality may suggest that low plasma hArg is a stronger contributor to these adverse outcomes in RTR than GAA.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Glicina/análogos & derivados , Homoarginina/sangre , Trasplante de Riñón/mortalidad , Adulto , Anciano , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Causas de Muerte , Estudios Transversales , Femenino , Estudios de Seguimiento , Glicina/sangre , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Modelos de Riesgos Proporcionales , Factores de Riesgo
6.
Amino Acids ; 51(6): 977-982, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31049693

RESUMEN

High plasma osteoprotegerin (OPG) and asymmetric dimethylarginine (ADMA) and low homoarginine (hArg) predict adverse renal and cardiovascular (CV) outcomes. In patients with chronic kidney disease and stable coronary artery disease, plasma OPG correlated with hArg (r = - 0.37, P = 0.03) and the hArg/ADMA molar ratio (r = - 0.46, P = 0.009), which was maintained upon adjustment for renal function. Elevated OPG levels and decreased hArg/ADMA ratios independently predicted 4-year composite CV and renal endpoints (CV death or progression to dialysis). Thus, high OPG and low hArg/ADMA ratio, albeit interrelated, appear to independently contribute to adverse clinical outcome.


Asunto(s)
Arginina/análogos & derivados , Enfermedad de la Arteria Coronaria/sangre , Homoarginina/sangre , Osteoprotegerina/sangre , Insuficiencia Renal Crónica/sangre , Anciano , Arginina/sangre , Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/patología , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/patología
7.
Amino Acids ; 51(6): 961-971, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31028565

RESUMEN

The importance of L-arginine (Arg) and relatives, including L-homoarginine (hArg) and asymmetric dimethylarginine (ADMA), in humans infected with Helicobacter pylori (Hp) is little understood. ADMA is produced by asymmetric dimethylation of the guanidine group of Arg residues in certain proteins and is released by proteolysis. High concentrations of circulating free ADMA are considered a risk factor for morbidity and mortality in adults. This risk is considered to arise from the inhibition of the synthesis of nitric oxide (NO), which is a potent vasodilator and inhibitor of platelet aggregation. In the present study, we quantified by stable isotope dilution gas chromatography-mass spectrometry (GC-MS) the concentration of free (f) and total (t) ADMA, Arg, hArg, lysine (Lys) and the sum of citrulline (Cit) and ornithine (Orn) (6 M HCl, 20 h, 110 °C) in serum samples of apparently healthy elderly subjects (n = 27; age, 31-105 years) who were tested for Hp infection. Nine subjects (5 males, 4 females) were found to be Hp seropositive (Hp+) and 18 subjects (8 males, 9 females) were found to be Hp seronegative (Hp‒). Proteinic (p) concentrations were determined by difference. fADMA (0.493 ± 0.068 vs 0.466 ± 0.081 µM, P = 0.382), pADMA (113 ± 73 vs 76 ± 59 nM, P = 0.169) and tADMA (0.606 ± 0.126 vs 0.543 ± 0.121 µM, P = 0.280) serum concentrations were found not to differ between the Hp+ and Hp- subjects. Serum concentrations of fArg (162 ± 30 vs 177 ± 36 µM, P = 0.471), fhArg (1.600 ± 0.638 vs 1.831 ± 0.742 µM, P = 0.554), and fLys (388 ± 170 vs 395 ± 149 µM, P = 0.700) also did not differ statistically between Hp+ and Hp- subjects. tArg (12.4 ± 1.49 vs 13.0 ± 1.33 mM, P = 0.190), tLys (23.0 ± 2.65 vs. 23.9 ± 2.66 mM, P = 0.456) and tCit + Orn (2.53 ± 0.76 vs 2.63 ± 0.85 mM, P = 0.817) did not differ between Hp+and Hp‒ subjects as well. phArg concentration was close to the limit of quantitation of the method (Hp+: 30 ± 210 nM; Hp-: 42 ± 205 nM), suggesting that hArg is virtually absent in serum proteins of the investigated subjects. pCit + Orn did not differ between infected and non-infected subjects. Our study suggests that Hp infection is not associated with elevated asymmetric dimethylation and citrullination of Arg proteins present in the serum or with the hArg synthesis from free Arg in elderly subjects. However, asymmetric Arg dimethylation was found to correlate inversely with Arg citrullination in Hp- (r2 = 0.408, P = 0.004) but not in Hp+ (r2 = 0.065, P = 0.506), with Arg citrullination decreasing and Arg asymmetric dimethylation increasing with subjects' age.


Asunto(s)
Arginina/análogos & derivados , Citrulinación , Citrulina/sangre , Infecciones por Helicobacter/sangre , Homoarginina/sangre , Metilación , Adulto , Anciano , Anciano de 80 o más Años , Arginina/sangre , Arginina/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Humanos , Lisina/sangre , Masculino , Persona de Mediana Edad , Óxido Nítrico/biosíntesis , Ornitina/sangre
8.
Anal Biochem ; 577: 59-66, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31028716

RESUMEN

l-Homoarginine (hArg) is biosynthesized from l-arginine (Arg) and l-lysine (Lys) by arginine:glycine amidinotransferase (AGAT). AGAT also catalyzes the formation of guanidinoacetate (GAA) from Arg and glycine (Gly). GAA is converted to creatine (N-methyl guanidinoacetate) by guanidinoacetate N-methyl-transferase (GAMT). Low circulating and excretory concentrations of hArg are associated with worse cardiovascular outcome and mortality. hArg is a poor substrate of nitric oxide synthase (NOS) and a weak inhibitor of arginase. The metabolism of hArg in humans is little investigated. Previously, we found that orally administered hArg (125 mg/day) increased the plasma concentration of hArg, but not of Arg, the substrate of NOS, in healthy subjects. We newly analyzed the plasma samples collected in that study for Lys and other amino acids. Repeated measures ANOVA revealed statistically significant differences between the groups (P = 0.008) with respect to plasma Lys concentration which increased by about 8% after a 4-week hArg supplementation. In vitro, recombinant human arginase and bovine liver arginase I were demonstrated by a specific and sensitive stable-isotope GC-MS assay to hydrolyze hArg to Lys. Our results suggest that Lys is a metabolite of hArg produced by the hydrolytic activity of arginase. Arginase may play a key role in hArg homeostasis in humans.


Asunto(s)
Arginasa/metabolismo , Arginina , Homoarginina , Lisina , Adulto , Arginina/sangre , Arginina/metabolismo , Femenino , Homoarginina/sangre , Homoarginina/metabolismo , Humanos , Lisina/sangre , Lisina/metabolismo , Masculino , Óxido Nítrico/metabolismo , Adulto Joven
9.
Amino Acids ; 51(3): 529-547, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30604095

RESUMEN

We developed and validated gas chromatography-mass spectrometry (GC-MS) methods for the simultaneous measurement of amino acids and their metabolites in 10-µL aliquots of human plasma and urine. De novo synthesized trideutero-methyl esters were used as internal standards. Plasma proteins were precipitated by acidified methanol and removed by centrifugation. Supernatants and native urine were evaporated to dryness. Amino acids were first esterified using 2 M HCl in methanol and then amidated using pentafluoropropionic anhydride for electron-capture negative-ion chemical ionization. Time programmes were used for the gas chromatograph oven and the selected-ion monitoring of specific anions. The GC-MS methods were applied in clinical studies on the HELLP syndrome and pediatric kidney transplantation (KTx) focusing on L-arginine-related pathways. We found lower sarcosine (N-methylglycine) and higher asymmetric dimethylarginine (ADMA) plasma concentrations in HELLP syndrome women (n = 7) compared to healthy pregnant women (n = 5) indicating altered methylation. In plasma of pediatric KTx patients, lower guanidinoacetate and homoarginine concentrations were found in plasma but not in urine samples of patients treated with standard mycophenolate mofetil-based immunosuppression (MMF; n = 22) in comparison to matched patients treated with MMF-free immunosuppression (n = 22). On average, the global arginine bioavailability ratio was by about 40% lower in the MMF group compared to the EVR group (P = 0.004). Mycophenolate, the major pharmacologically active metabolite of MMF, is likely to inhibit the arginine:glycine amidinotransferase (AGAT), and to enhance arginase activity in leukocytes and other types of cell of MMF-treated children.


Asunto(s)
Amidinas/metabolismo , Aminoácidos/sangre , Aminoácidos/orina , Arginasa/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Síndrome HELLP/metabolismo , Enfermedades Renales/metabolismo , Trasplante de Riñón/métodos , Adolescente , Adulto , Arginina/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Inmunosupresores/farmacología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/cirugía , Metilación , Proyectos Piloto , Embarazo
10.
Anal Biochem ; 563: 67-70, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30312621

RESUMEN

NG,NG-Dimethyl-L-arginine (asymmetric dimethylarginine, ADMA) is a cardiovascular risk factor. ADMA circulates in blood as a free acid (fADMA) and as constituent of not yet identified proteins (prADMA). We describe here a protocol for the GC-MS quantification of ADMA released from serum proteins using 6 M HCl (110 °C, 20 h). L-Homoarginine (hArg) is useful in measuring digestibility of amino acids in food proteins. We demonstrate that hArg is not present in human serum proteins and is useful in measuring serum prADMA. The concentration of prADMA in elderly subjects is about 90 nM and the average fADMA/prADMA ratio 6:1.


Asunto(s)
Arginina/análogos & derivados , Proteínas Sanguíneas/análisis , Homoarginina/análisis , Homoarginina/sangre , Anciano , Aminoácidos/análisis , Aminoácidos/sangre , Arginina/análisis , Arginina/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino
11.
J Appl Physiol (1985) ; 125(6): 1997-2007, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359537

RESUMEN

The aim of this study was to investigate the later effects of daily NO3- supplementation over 3 wk of training on the relationship between O2 uptake and power at different intensities with an incremental test (IT), a double-wingate test (WT), and an endurance capacity test at 80% Wmax (ECT) before and after the supplementation period. Seventeen male recreational athletes participated in this double-blind placebo (PL)-controlled study. Subjects participated in a 3-wk intermittent high-intensity, high-volume training period with 45 intervals of Wmax - 10 W and an active recovery period of 10 W in between with dietary NO3- (NaNO3) or placebo supplementation (NaCl) (both 8.5 mg·kg-1·day-1) on a cycle ergometer. During a training session, plasma [ NO3- ] ( P < 0.001) and plasma [ NO2- ] ( P < 0.01) were higher in nitrate (N), whereas in pre- and posttests mean plasma [ NO3- ] and [ NO2- ] were not different between groups. In the WT [48 h after cessation of supplementation (C)], the ratio between V̇o2 and power decreased in N ( P < 0.01) with no changes in PL. Endurance capacity (4-5 days after C) similarly increased in both groups ( P < 0.01). However, the total oxygen consumption decreased by 5% ( P < 0.01) in N, with no change in PL. The slope of V̇o2·W-1 in IT (5-7 days after C) decreased in N ( P < 0.01), whereas no changes were found in PL. During low- and moderate-intensity workloads, no changes and differences in V̇o2 could be detected. We conclude that nitrate supplementation causes a sustaining reduction of the oxygen cost per watt during exercise with a large recruitment of type II muscle fibers without affecting endurance capacity. NEW & NOTEWORTHY Because most studies focused on the acute effects of NO3- supplementation on exercise performance during a supplementation period, the sustainability of the effects of the NO3- supplementation remain unknown. We followed the development of V̇o2/W at different intensities during the first week after cessation of daily NO3- supplementation over 3 wk. The results indicate that NO3- supplementation has a long-term effect for at least 7 days after cessation during heavy all-out workloads without affecting endurance capacity.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Entrenamiento de Intervalos de Alta Intensidad , Nitratos/administración & dosificación , Consumo de Oxígeno/efectos de los fármacos , Adulto , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio , Voluntarios Sanos , Humanos , Masculino , Nitratos/sangre , Adulto Joven
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1100-1101: 174-178, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340066

RESUMEN

NG-Hydroxy-l-arginine (NOHA) is the intermediate product of the conversion of l-arginine to l-citrulline and nitric oxide (NO) by nitric oxide synthase (NOS). NO is further oxidized to nitrite and nitrate which circulate in the blood and are excreted in the urine. Nitrite and nitrate may therefore serve as surrogates of NO synthesis. NOHA has been reported to occur in various cells and in blood of animals and humans. The concentration of nitrite in the circulation is comparable to the concentration of NOHA in plasma and serum of humans and laboratory animals. NOHA is a relatively unstable compound and the interaction of its NG-hydroxy group with redox active species or during sample treatment such as derivatization in the heat may yield N-containing compounds including nitrite and nitrate. In theory, NOHA may interfere with the analysis of nitrite and nitrate. In the present study, we investigated a possible interference of synthetic NOHA (0-400 µM) with the gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NICI-MS) method of analysis of circulating and urinary nitrite and nitrate involving derivatization with pentafluorobenzyl (PFB) bromide in aqueous acetone at 50 °C for 5 min (nitrite) or for 60 min (nitrite and nitrate). Our results show that NOHA does not interfere with the measurement of nitrite and nitrate in human plasma and urine by this method at concentrations up to 400 µM.


Asunto(s)
Arginina/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Nitratos/sangre , Nitratos/orina , Nitritos/sangre , Nitritos/orina , Arginina/química , Humanos
13.
Amino Acids ; 50(10): 1391-1406, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30003335

RESUMEN

The L-arginine/nitric oxide synthase (NOS) pathway is considered to be altered in muscular dystrophy such as Becker muscular dystrophy (BMD). We investigated two pharmacological options aimed to increase nitric oxide (NO) synthesis in 20 male BMD patients (age range 21-44 years): (1) supplementation with L-citrulline (3 × 5 g/d), the precursor of L-arginine which is the substrate of neuronal NO synthase (nNOS); and (2) treatment with the antidiabetic drug metformin (3 × 500 mg/d) which activates nNOS in human skeletal muscle. We also investigated the combined use of L-citrulline (3 × 5 g/d) and metformin (3 × 500 mg/d). Before and after treatment, we measured in serum and urine samples the concentration of amino acids and metabolites of L-arginine-related pathways and the oxidative stress biomarker malondialdehyde (MDA). Compared to healthy subjects, BMD patients have altered NOS, arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) pathways. Metformin treatment resulted in concentration decrease of arginine and MDA in serum, and of homoarginine (hArg) and guanidinoacetate (GAA) in serum and urine. L-Citrulline supplementation resulted in considerable increase of the concentrations of amino acids and creatinine in the serum, and in their urinary excretion rates. Combined use of metformin and L-citrulline attenuated the effects obtained from their single administrations. Metformin, L-citrulline or their combination did not alter serum nitrite and nitrate concentrations and their urinary excretion rates. In conclusion, metformin or L-citrulline supplementation to BMD patients results in remarkable antidromic changes of the AGAT and GAMT pathways. In combination, metformin and L-citrulline at the doses used in the present study seem to abolish the biochemical effects of the single drugs in slight favor of L-citrulline.


Asunto(s)
Arginina/metabolismo , Citrulina/administración & dosificación , Metformina/administración & dosificación , Distrofia Muscular de Duchenne/tratamiento farmacológico , Adulto , Amidinotransferasas/metabolismo , Creatinina/sangre , Suplementos Dietéticos/análisis , Femenino , Glicina/análogos & derivados , Glicina/sangre , Guanidinoacetato N-Metiltransferasa/metabolismo , Homoarginina/sangre , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/metabolismo , Nitratos/sangre , Óxido Nítrico Sintasa de Tipo I/metabolismo , Resultado del Tratamiento , Adulto Joven
14.
Anal Biochem ; 556: 40-44, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944873

RESUMEN

Circulating and excretory NG,N´G-dimethyl-l-arginine (symmetric dimethylarginine, SDMA) and NG,NG-dimethyl-l-arginine (asymmetric dimethylarginine, ADMA) are cardiovascular risk factors. Despite close chemical structures, the gas chromatography-mass spectrometry (GC-MS) measurement of SDMA is remarkably more difficult than that of ADMA for as yet unknown reasons. Here, we describe an improved GC-MS method for the quantitative determination of SDMA in human urine using commercially available NG,N´G-di-[2H3]methyl-l-arginine (d6-SDMA) as internal standard. The method is based on a single derivatization step with pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C) to N,N,N,O-tetrakis-pentafluoropropionyl derivatives, electron-capture negative-ion chemical ionization and selected-ion monitoring of the mass-to-charge (m/z) ions of m/z 456 for SDMA and m/z 462 for d6-SDMA.


Asunto(s)
Arginina/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Arginina/orina , Humanos , Metilación
15.
Amino Acids ; 50(7): 799-821, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29728915

RESUMEN

We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO2-), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N2O3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., UNOxR, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of UNOxR. We determined UNOxR values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined UNOxR values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of UNOxR in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean UNOxR values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults (660) and healthy young men (1500). The intra- and inter-variabilities of UNOxR were of the order of 50% in young and elderly healthy subjects. UNOxR values were lower in black compared to white boys (314 vs. 483, P = 0.007), which is in line with reported lower NO bioavailability in black ethnicity. Mean UNOxR values were lower in DMD (424) compared to healthy (730) children, but they were higher in T1DM children (1192). ISDN (3 × 30 mg) decreased stronger UNOxR compared to PETN (3 × 80 mg) after 1 day (P = 0.046) and after 5 days (P = 0.0016) of oral administration of therapeutically equivalent doses. In healthy young men who ingested NaNO3 (0.1 mmol/kg/d), UNOxR was higher than in those who ingested the same dose of NaCl (1709 vs. 369). In LEW.1AR1-iddm rats, mean UNOxR values were lower than in healthy rats (198 vs. 308) and comparable to those in APOE*3-Leiden.CETP mice (151).


Asunto(s)
Diabetes Mellitus Tipo 1/orina , Diabetes Mellitus Tipo 2/orina , Riñón/metabolismo , Nitratos/orina , Nitritos/orina , Enfermedades Reumáticas/orina , Animales , Arteriopatías Oclusivas/sangre , Arteriopatías Oclusivas/orina , Anhidrasas Carbónicas/metabolismo , Bovinos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/orina , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Ratones , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/orina , Óxido Nítrico/sangre , Ratas , Enfermedades Reumáticas/sangre
16.
Anal Biochem ; 550: 132-136, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29729279

RESUMEN

The most widely recognized activity of the large family of the metalloenzyme carbonic anhydrases (CAs) is the diffusion-controlled hydration of CO2 to HCO3- and one proton, and the less rapid dehydration of HCO3- to CO2: CO2 + H2O ⇆ HCO3- + H+. CAs also catalyze the reaction of water with other electrophiles such as aromatic esters, sulfates and phosphates, thus contributing to lending to CAs esterase, sulfatase and phosphatase activity, respectively. Renal CAII and CAIV are involved in the reabsorption of nitrite, the autoxidation product of the signalling molecule nitric oxide (NO): 4 NO + O2 + 2 H2O → 4 ONO- + 4 H+. Bovine and human CAII and CAIV have been reported to exert nitrite reductase and nitrous anhydride activity: 2 NO2- + 2 H+ ⇆ [2 HONO] ⇆ N2O3 + H2O. In the presence of L-cysteine, NO may be formed. In the literature, these issues are controversial, mainly due to analytical shortcomings, i.e., the inability to detect authentic HONO and N2O3. Here, we present a gas chromatography-mass spectrometry (GC-MS) assay to unambiguously detect and quantify the nitrous anhydrase activity of CAs. The assay is based on the hydrolysis of N2O3 in H218O to form ON18O- and 18ON18O-. After pentafluorobenzyl bromide derivatization and electron capture negative-ion chemical ionization of the pentafluorobenzyl nitro derivatives, quantification is performed by selected-ion monitoring of the anions with mass-to-charge (m/z) ratios of 46 (ONO-), m/z 48 (ON18O- and 18ONO-), m/z 50 (18ON18O-) and m/z 47 (O15NO-, internal standard).


Asunto(s)
Anhidrasa Carbónica II/química , Anhidrasa Carbónica IV/química , Óxido Nítrico/química , Nitrito Reductasas/química , Dióxido de Nitrógeno/química , Animales , Bovinos , Humanos
17.
Methods Mol Biol ; 1747: 113-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29600455

RESUMEN

This chapter describes an ultraperformance liquid chromatographic-tandem mass spectrometric (UPLC-MS/MS) method for the quantitative determination of S-nitrosoglutathione (GSNO) in human plasma. S-[15N]Nitrosoglutathione (GS15NO) serves as the internal standard. The protocol involves inactivation of plasma γ-glutamyltransferase activity by serine-borate, stabilization of GSNO with EDTA, and avoidance of S-transnitrosylation reactions by blocking SH groups with N-ethylmaleimidide (NEM). Fresh blood is treated with NEM/serine-borate/EDTA, plasma is spiked with GS15NO (50 nM), ultrafiltered (cutoff 10 kDa) and 10-µL aliquots of ultrafiltrate are analyzed by UPLC-MS/MS in the positive electrospray ionization (ESI+) mode. LC is performed on a Nucleoshell column using isocratic (0.5 mL/min) elution with acetonitrile-20 mM ammonium formate (70:30, v/v), pH 7. Quantification is performed by selected-reaction monitoring the mass transition m/z 337 ([M+H]+) â†’ m/z 307 ([M+H-14NO]+●) for GSNO and m/z 338 ([M+H]+) â†’ m/z 307 ([M+H-15NO]+●) for GS15NO. Matrix effects are outweighed by the internal standard GS15NO. The lower limit of quantitation (LOQ) is 2.8 nM.


Asunto(s)
Cromatografía Liquida , S-Nitrosoglutatión/sangre , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Eritrocitos/metabolismo , Humanos , Marcaje Isotópico , Óxido Nítrico/química , Nitritos/química
18.
Cardiovasc Diabetol ; 17(1): 1, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29301528

RESUMEN

NG-Methylation of L-arginine (Arg) residues in certain proteins by protein arginine methyltransferases and subsequent proteolysis yields NG-monomethyl-L-arginine (MMA), NG,NG-dimethyl-L-arginine (asymmetric dimethylarginine, ADMA) and NG,N'G-dimethyl-L-arginine (symmetric dimethylarginine, SDMA). Biological MMA, ADMA and SDMA occur as free acids in the nM-range and as residues of proteins of largely unknown quantity. Arginine:glycine amidinotransferase (AGAT) catalyzes the synthesis of L-homoarginine (hArg) from free Arg and L-lysine. Biological hArg is considered to occur exclusively as free acid in the lower µM-range. Nitric oxide synthase (NOS) catalyzes the conversion of Arg (high affinity) and hArg (low affinity) to nitric oxide (NO) which is a pleiotropic signaling molecule. MMA, ADMA and SDMA are inhibitors (MMA > ADMA â‰« SDMA) of NOS activity. Slightly elevated ADMA and SDMA concentrations and slightly reduced hArg concentrations in the circulation are associated with many diseases including diabetes mellitus. Yet, this is paradox: (1) free ADMA and SDMA are weak inhibitors of endothelial NOS (eNOS) which is primarily responsible for NO-related effects in the cardiovascular system, with free hArg being a poor substrate for eNOS; (2) free ADMA, SDMA and hArg are not associated with oxidative stress which is considered to induce NO-related endothelial dysfunction. This ADMA/SDMA/hArg paradox may be solved by the assumption that not the free acids but their precursor proteins exert biological effects in the vasculature, with hArg antagonizing the effects of NG-methylated proteins.


Asunto(s)
Arginina/análogos & derivados , Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Homoarginina/metabolismo , Animales , Arginina/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Endotelio Vascular/fisiopatología , Humanos , Metilación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteolisis , Transducción de Señal
20.
World J Gastroenterol ; 23(40): 7343-7346, 2017 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-29142482

RESUMEN

S-Adenosyl-L-methionine (SAM) is a cofactor serving as a methyl donor in numerous enzymatic reactions. It has been reported that SAM has the potential to modify antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus -expressing cells at millimolar concentrations. The efficacy of SAM at micromolar concentrations and the underlying mechanisms remain to be demonstrated.


Asunto(s)
Metionina Adenosiltransferasa , S-Adenosilmetionina , Antioxidantes , Glutatión , Hepacivirus , Metionina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA