Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259398

RESUMEN

Previous studies have described RT-LAMP methodology for the rapid detection of SARS-CoV-2 in nasopharyngeal (NP) and oropharyngeal (OP) swab and saliva samples. This study describes the validation of an improved sample preparation method for extraction free RT-LAMP and defines the clinical performance of four different RT-LAMP assay formats for detection of SARS-CoV-2 within a multisite clinical evaluation. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva from asymptomatic and symptomatic individuals across healthcare and community settings. For Direct RT-LAMP, overall diagnostic sensitivity (DSe) of 70.35% (95% CI 63.48-76.60%) on swabs and 84.62% (79.50-88.88%) on saliva was observed, with diagnostic specificity (DSp) of 100% (98.98-100.00%) on swabs and 100% (99.72-100.00%) on saliva when compared to RT-qPCR; analysing samples with RT-qPCR ORF1ab CT values of [≤]25 and [≤]33, DSe of 100% (96.34-100%) and 77.78% (70.99-83.62%) for swabs were observed, and 99.01% (94.61-99.97%) and 87.61% (82.69-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and DSp were 96.06% (92.88-98.12%) and 99.99% (99.95-100%) for swabs, and 80.65% (73.54-86.54%) and 99.99% (99.95-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use-cases, including frequent, interval-based testing of saliva with Direct RT-LAMP from asymptomatic individuals that may otherwise be missed using symptomatic testing alone.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-365015

RESUMEN

The effect of heat on SARS-CoV-2/England/2/2020 viability was assessed by plaque assay and virus culture. Heating to 56{degrees}C and 60{degrees}C for 15, 30 and 60 minutes led to a reduction in titre of between 2.1 and 4.9 log10 pfu/ml but complete inactivation was not observed. At 80{degrees}C plaques were observed after 15 and 30 minutes of heating, however after 60 minutes viable virus was only detected following virus culture. Heating to 80{degrees}C for 90 minutes and 95{degrees}C for 1 and 5 minutes resulted in no viable virus being detected. At 56{degrees}C and 60{degrees}C significant variability between replicates was observed and the titre often increased with heat-treatment time. Nucleic acids were extracted and tested by RT-PCR. Sensitivity of the RT-PCR was not compromised by heating to 56{degrees}C and 60{degrees}C. Heating to 80{degrees}C for 30 minutes or more and 95{degrees}C for 1 or 5 minutes however, resulted in an increase of at least three Ct values. This increase remained constant when different dilutions of virus underwent heat treatment. This indicates that high temperature heat inactivation of clinical samples prior to nucleic acid extraction could significantly affect the ability to detect virus in clinical samples from patients with lower viral loads by RT-PCR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...