Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1285922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143862

RESUMEN

Introduction: The impact of groundwater table depth (GTD) on bacterial communities and soil nutrition in revegetated areas remains unclear. Methods: We investigated the impacts of plant growth and soil physicochemical factors on rhizosphere bacterial communities under different GTD. Results: The four plant growth indices (Pielou, Margalef, Simpson, and Shannon-Wiener indices) and soil water content (SWC) at the Artem and Salix sites all showed a decreasing trend with increasing GTD. Salix had a higher nutrient content than Artem. The response of plant rhizosphere bacterial communities to GTD changes were as follows. Rhizosphere bacteria at the Artem and Salix sites exhibited higher relative abundance and alpha diversity in SW (GTD < 5 m) compared than in DW (GTD > 5 m). Functional microbial predictions indicated that the rhizosphere bacterial communities of Artem and Salix promoted carbon metabolism in the SW. In contrast, Artem facilitated nitrogen cycling, whereas Salix enhanced both nitrogen cycling and phototrophic metabolism in the DW. Discussion: Mantel test analysis revealed that in the SW of Artem sites, SWC primarily governed the diversity of rhizosphere and functional bacteria involved in the nitrogen cycle by affecting plant growth. In DW, functional bacteria increase soil organic carbon (SOC) to meet nutrient demands. However, higher carbon and nitrogen availability in the rhizosphere soil was observed in the SW of the Salix sites, whereas in DW, carbon nutrient availability correlated with keystone bacteria, and changes in nitrogen content could be attributed to nitrogen mineralization. This indicates that fluctuations in the groundwater table play a role in regulating microbes and the distribution of soil carbon and nitrogen nutrients in arid environments.

2.
Huan Jing Ke Xue ; 42(9): 4527-4537, 2021 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-34414753

RESUMEN

Global climate change has significantly changed precipitation patterns. Soil respiration (SR), as an important pathway through which CO2 is released from the soil carbon pool into the atmosphere, may affect the carbon cycle process of terrestrial ecosystems and have a feedback effect on global climate change in response to precipitation change. However, at present there is limited understanding of how SR is affected by precipitation change. Field precipitation control experiments were conducted (with -40%, -20%, natural, 20%, and 40% precipitation) on desert grassland in the west of the Loess Plateau, to investigate the influence of precipitation change on SR dynamics and its relationship with soil water content, soil temperature, aboveground biomass, soil organic carbon, microbial biomass carbon, carbon-nitrogen ratio, and other factors. The results show that the diurnal variations of SR under different precipitation treatments were consistent in unimodal and bimodal models over three years. SR showed an increasing trend with added precipitation, relative to the control, and significant differences were observed between the second year (wetter) and the third year (drier) of the precipitation-manipulation experiment, indicating that precipitation changes had a legacy effect on SR. At the same time, SR was lowest under the -40% treatment and highest under the 40% treatment during the wetter year. The negative response of SR to precipitation exclusion treatments was stronger than the positive response to precipitation addition treatments. SR in drier years was significantly higher under precipitation addition treatments than the control, and the positive response of SR to increased precipitation treatment was significantly stronger than that under decreased precipitation treatment. In addition, soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio were the environmental factors that obviously affected SR and increased with additional precipitation. SR increased with increases in soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio, but decreased with increases in microbial biomass carbon. Among these factors, soil water content had the highest interpretation rate for SR, indicating that soil water content was the main environmental factor controlling SR in desert grassland. In both wetter and drier years, the amplitude of plant biomass input was lower than the amplitude of SR output under precipitation change, indicating that precipitation change may be unfavorable to soil carbon sequestration, especially in drier years, when precipitation change has a stronger influence on carbon pool output. Therefore, precipitation changes on SR in desert grassland in various dry and wet years may have different influences on the carbon cycle process of ecosystems, thus providing a reference for regional carbon budget assessment.


Asunto(s)
Carbono , Suelo , Ecosistema , Pradera , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA